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Chapter 1

Formulas and such

1.1 Intro

This chapter contains several common formulas etc., without any further explanation of how they are
derived.

1.2 Components in series and parallel

Series resistances add:

Rs = R1 +R2 +R3 + · · ·

Parallel resistances diminish:

Rp =
1

1
R1

+ 1
R2

+ 1
R3

+ · · ·

Impedances behave like resistances.

Series capacitances diminish:

Cs =
1

1
C1

+ 1
C2

+ 1
C3

+ · · ·

Parallel capacitances add:

Cp = C1 + C2 + C3 + · · ·

Series inductances add:

Ls = L1 + L2 + L3 + · · ·

Parallel inductances diminish:

Lp =
1

1
L1

+ 1
L2

+ 1
L3

+ · · ·

For the special case of two components of the diminshing type (x being a dummy variable):

1
1
x1

+ 1
x2

=
x1 · x2
x1 + x2
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1.3 Digital

1.3.1 Noise margins

NMH = VOH − VIH
NML = VIL − VOL

Forbidden region = VIH − VIL

1.4 MOSFETs

1.4.1 SCS model

iDS =

{
K
2

(vGS − VT )2 for vGS ≥ VT , vDS ≥ vGS − VT
0 for vGS < VT

The above covers saturation and cutoff regions only (the SCS model).

1.4.2 SR model

iDS =

{
VDS

RON
for VGS ≥ VT

0 otherwise

Alternatively:

RDS =

{
RON for VGS ≥ VT

∞ otherwise

Used for digital circuits only (in this course).

1.5 State devices / energy storage devices

This section assumes time-invariant devices, i.e. capacitance/inductance is a fixed value, and not a function
of time.

1.5.1 Capacitors

The current through a capacitor is a function of the rate of change of voltage:

i(t) = C
dv(t)

dt

To find the voltage over a capacitor, we need to know its full history:

v(t) =
1

C

∫ t

−∞
i(t)dt

... or we can simply do it by knowing the current through it between t1 and t2, plus the initial voltage:

v(t2) =
1

C

∫ t2

t1

i(t)dt+ v(t1)

The energy stored in a capacitor is:

E =
1

2
Cv2
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1.5.2 Inductors

The voltage over an inductor is a function of the rate of change of current:

v(t) = L
di(t)

dt

To find the current through a capacitor, we need to know its full history:

i(t) =
1

L

∫ t

−∞
v(t)dt

... or we can simply do it by knowing the voltage over it between t1 and t2, plus the initial current through
it:

i(t2) =
1

L

∫ t2

t1

v(t)dt+ i(t1)

The energy stored in an inductor is:

E =
1

2
Li2

1.6 First order circuits

General equation for an increasing/decaying exponential in a RC/RL circuit:

v = VS + (V0 − VS)e−t/RC

where v = the voltage across the capacitor or inductor.

ZIR / Zero Input Response, same as above with VS = 0:

V0e
−t/RC

ZSR / Zero State Response, same as above with V0 = 0:

VS(1− e−t/RC)
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1.7 Second order circuits, impedance, filters

Canonical form of the characteristic equation for second-order circuits; use this to match up the values of
α and ω0 for a circuit:

s2 + 2αs+ ω0
2 = 0

1.7.1 For all LC and RLC circuits:

Natural/undamped resonant radian frequency: ω0 (rad/s)

Damping factor: α (rad/s)

Note that zeta (ζ) is used as a damping factor in many texts; it is defined as

ζ =
α

ω0

(dimensionless)

The bandwidth ∆ω, i.e. the width of the frequency band that is above
1√
2

times the input amplitude, is

given by

∆ω = 2α (rad/s) (measured at
1√
2

points)

Quality factor: Q =
ω0

2α
(dimensionless)

RLC circuits can be underdamped, overdamped, or critically damped.

Underdamped: ω0 > α or, equivalently, Q >
1

2
or, equivalently, ζ < 1

Overdamped: ω0 < α or, equivalently, Q <
1

2
or, equivalently, ζ > 1

Critically damped: ω0 = α or, equivalently, Q =
1

2
or, equivalently, ζ = 1

When they are underdamped, the damped resonant frequency ωd is given by

ωd =
√
ω0

2 − α2

The naming here might be confusing; the damped frequency is used for underdamped systems. The reason
is that the undamped frequency is used for systems with no damping whatsoever, i.e. LC circuits with no
resistor.
Underdamped RLC circuits are the only kind that oscillate, so the natural frequency is less interesting for
overdamped circuits.

1.7.2 Series RLC circuits

ω0 =
1√
LC

rad/s

f0 =
1

2π
√
LC

Hz

α =
R

2L
rad/s

∆ω = 2α =
R

L
rad/s
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Period:
2π

ω0

= 2π
√
LC seconds

Q =
ω0

2α
=

L

R
√
LC

(dimensionless)

1.7.3 Parallel RLC circuits

ω0 =
1√
LC

rad/s

f0 =
1

2π
√
LC

Hz

α =
1

2RC
rad/s

∆ω = 2α =
1

RC
rad/s

Period:
2π

ω0

= 2π
√
LC seconds

Q =
ω0

2α
=

RC√
LC

(dimensionless)

1.7.4 Frequency- to time-domain conversion

You can find the time-domain behavior of a circuit to sinusoidal input from nothing but a complex
amplitude of the form Vx:

vX(t) = |Vx| cos (ωt+ 6 Vx)

See below for information about how to calculate the magnitude |z| and the angle 6 z of a complex number.

1.7.5 Complex algebra

A few properties of complex numbers that are necessary to know:

|a+ jb| =
√
a2 + b2

6 (a+ jb) = arctan (
b

a
) or, preferably, atan2(a, b)

|a+ j0| = a if a > 0; otherwise, the magnitude is just the absolute value |a|

|0 + jb| = b

|0− jb| = b

6 (a+ j0) = 0

6 (0 + jb) =
π

2

6 (0− jb) = −π
2

|z1 · z2| = |z1| · |z2|∣∣∣∣z1z2
∣∣∣∣ =
|z1|
|z2|

6 (z1 · z2) = 6 z1 + 6 z2
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6

(
z1
z2

)
= 6 z1 − 6 z2

When finding angles, it’s best to use a function which is capable of giving correct answers in all quadrants of
the unit circle. The “atan2” function was created in many computer languages for this purpose. It is equal

to arctan (
b

a
) for some inputs, but not all; arctan() cannot differentiate between all quadrants, because

arctan

(
−a
−b

)
= arctan

(a
b

)
and likewise, arctan

(
−a
b

)
= arctan

(
a

−b

)
. Thus, the atan2 function has

two arguments, and when using it, the angle of a complex number a+ jb is simply atan2(a, b).

The angle of a fully real number is always 0, and the angle of a fully imaginary number always either
π

2
(for positive imaginary numbers) or −π

2
(for negative imaginary numbers).

One definition of atan2, if you are not using math software that has it, is:

atan2(b, a) = 2 arctan (
b√

a2 + b2 + a
)

However, do note that these notes use an atan2 function that is defined with the variables in the opposite
order, i.e. atan2(a, b); specifically, Mathematica’s ArcTan[a, b] function.

1.7.6 Impedances

Resistor: ZR = R

Capacitor: ZC =
1

jωC

Inductor: ZL = jωL
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Chapter 2

Circuit analysis

2.1 Thevenin equivalent circuits

Say we have an capacitor circuit to analyze:

+
−VS

R1 R2

C

+

−

vCR3

Since this is a linear network, we can simplify it by calculating its Thevenin equivalent. Consider the
network as seen from the port where the capacitor is attached:

+
−VS

R1 R2

R3

−

+

VTH

VTH , the open circuit voltage, will be given by the voltage divider formed by R3 and R1:

VTH =
R3

R1 +R3

· VS

Since no current flows at the port (for the open circuit voltage!), R2 doesn’t contribute at all.
We also want to measure the resistance “looking in” to this port; this will be the Thevenin resistance RTH .
To do this, we turn off all independant voltage and current sources, by replacing all current sources with
opens and all voltage sources with short circuits.
Leave dependant sources in the circuit!
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R1 R2

R3

RTH = R2 + (R1||R3) = R2 +
R1 ·R3

R1 +R3

Now that we know the Thevenin voltage VTH and the Thevenin resistance RTH , we can replace the circuit
with a voltage source of voltage VTH volts in series with a resistor of value RTH ohm, and place the
capacitor back into the circuit:

+
−VTH

RTH

C

+

−

vC

Our previous circuit has now turned into a simple RC circuit, which is easier to analyze. See the chapter
on RC circuits.

As a side note, another way of measuring the Thevenin resistance is to short circuit the output node,
calculate/measure the short-circuit current (with all sources left intact, of course), and calculate RTH as
VTH

ISC
.

In summary:
• Calculate/measure the open circuit voltage VTH at the port
• Turn off all independent sources (make short circuits of voltage sources, and open circuits of current
sources), but leave dependant sources intact
• Calculate/measure the resistance RTH at the port terminal pair
• Replace the original circuit with a series circuit of a voltage source (voltage VTH volts), a resistor
(resistance RTH ohm) and the element you want to analyze.
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2.2 Norton equivalent circuits

Nortan equivalent circuits are very similar to Thevenin equivalents, but use a current source in parallel
with a resistor rather than a voltage source in series with a resistor.
To convert a circuit to its Norton equivalent:
• Calcurate/measure the short circuit current, i.e. the current that would flow through the output port if
we were to short-circuit it. The result is the Norton current IN .
• Turn off all independent sources (make short circuits of voltage sources, and open circuits of current
sources), but leave dependant sources intact.
• Calculate/measure the resistance at the port terminal pair; the result is the Norton resistance RN .
• Replace the original circuit with a parallel circuit of a current source (current IN amperes), a resistor
(resistance RN ohm) and the element you want to analyze.

IN RN C

+

−

vC

Note that since the method for calculating the equivalent resistance is identical for the Thevenin and
Norton methods, RN = RTH . It is easy to convert between one and the other:

RN = RTH

IN =
VTH
RTH

VTH = IN ·RN
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Chapter 3

Small signal method

3.1 Deriving small signal models

For a device with iD = f(vD), the small signal current id is given by

∂f(vD)

∂vD

∣∣∣∣
vD=VD︸ ︷︷ ︸

gm

·vd

where vd is the small signal input voltage.
In other words, take the partial derivative of the V-I relation, with respect to the voltage. That gives
gm, the transconductance. The transconductance multiplied by the small signal input voltage vd gives the
small signal current.

As an example, a MOSFET in the saturation region has iDS = f(vGS) = K
2

(vGS − VT )2:

ids =
∂K

2
(vGS − VT )2

∂vGS

∣∣∣∣∣
vGS=VGS︸ ︷︷ ︸

gm

·vgs = K(VGS − VT )︸ ︷︷ ︸
gm

·vgs

Note the difference between vGS (the total gate-to-source voltage), VGS (the DC bias voltage) and vgs (the
small signal / incremental voltage).
Also note that the value of gm depends not only on the MOSFET parameters K and VT , but also on the
user-chosen DC bias voltage VGS.

Here’s a table of common circuit elements and their small signal equivalents:

Device Small signal replacement
Resistor, R Ω Resistor, R Ω
Voltage source, V volts Short circuit
Current source, I amps Open circuit
MOSFET in saturation region VCCS, ids = gmvgs, gm = K(VGS − VT )

MOSFET with gate/drain tied together Resistor,
1

K(VDS − VT )
Ω (for vDS > VT )

12



3.2 Multivariable small signal models

In some cases, it might be necessary to make a small signal model of a device where the current depends
on more than one variable. An example (that will be used here) in 6.002x is the (probably hypothetical)
“NewFET” in the week 6 homework.
In this case, we take the partial derivative of the gate-to-source voltage at the bias point times the small
signal voltage vgs, plus the partial derivative of the drain-to-source voltage at the bias point times the
small signal voltage vds.
First, the properties of the NewFET:

iDS =

{
0 for vGS < VT

K(vGS − VT )vDS
2 for vGS ≥ VT

The small signal model will look like this:

gmvgs ro

ids
D

S

+

−

vds

S

+

−

vgs

G

The small signal current ids will depend on both vgs and vds, in this manner:

ids = vgs
∂iD
∂vGS

∣∣∣∣
vGS=VGS︸ ︷︷ ︸
gm

+vds
∂iD
∂vDS

∣∣∣∣
vDS=VDS︸ ︷︷ ︸

1/ro

gm will be the regular transconductance, calculated the same as with MOSFETs (see the above section):

gm =
∂iD
∂vGS

∣∣∣∣
vGS=VGS

=
∂K(vGS − VT )vDS

2

∂vGS

∣∣∣∣
vGS=VGS

= KVDS
2

ro will be the reciprocal of the partial of iD with respect to vDS:
(In other words, the partial will give a conductance, and we want a resistance.)

1

ro
=

∂iD
∂vDS

∣∣∣∣
vDS=VDS

=
∂K(vGS − VT )vDS

2

∂vDS

∣∣∣∣
vDS=VDS

= 2KVDS(VGS − VT )

So

ro =
1

2KVDS(VGS − VT )

From these equations and the circuit diagram, we see that

ids =
vds
ro

+ gmvgs = vds · 2KVDS(VGS − VT ) +KVDS
2 · vgs

Note that, although the expression contains a square term (VDS
2), it is still linear, as the square term is a

constant - the bias voltage VDS should not change, or the entire small signal model will be incorrect either
way.
So, the result is not quite the simplest of expressions, but when the bias constants are replaced with their
actual bias values, the result is of the form

ids = C1vds + C2vgs

where C1 and C2 are constants.
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Chapter 4

First-order circuits

4.1 Series RC circuits

+
−VS

R

C

+

−

vC

We start off by writing down a KCL equation for the unknown node voltage vC :

vC − VS
R

+ C
dvC
dt

= 0

Rewrite the equation to get it in the form we prefer:

RC
dvC
dt

+ vC = VS

To solve this first-order linear differential equation, we’ll use the method of particular and homogeneous
solutions, where we need to find two solutions to the differential equation: the first (the particular solution)
is any solution that makes the equation true:

RC
dvCp
dt

+ vCp = VS

We see here that if we pick vCp = VS, where VS is a constant, thus making dVS
dt

= 0, this equation is indeed
true; since the first term becomes 0, all that remains is VS = VS - which is clearly true!
Thus, we’ve found the particular solution:

vCp = VS

The next step in this method is to find a solution to the homogeneous equation, where VS (the “input
drive”) is zero:

RC
dvCh
dt

+ vCh = 0

We need a function such that its derivative is the function itself times a constant. ex comes to mind -
more specifically, the solution will have some (still unknown) coefficients A and s, such that:

14



vCh = Aest

We substitute Aest into the homogeneous equation and end up with:

RC
dAest

dt
+ Aest = 0

We calculate the derivative and replace the d
dt

term with it:

RCAsest + Aest = 0

Divide both sides by Aest:

RCs+ 1 = 0

RCs = −1

s = − 1

RC

We’ve thus found one of our two constants.
The total solution to the differential equation will be the sum of the particular and homogeneous solutions,
so the next step is to add them together:

vC(t) = vCp(t) + vCh(t)

vC(t) = VS + Ae−
1

RC
·t

All that remains to do is to find the value of the constant A. To do so, we substitute vC for the given
initual condition vC(0) = V0, while setting t = 0:

V0 = VS + Ae0

V0 = VS + A

A = V0 − VS
We’ve thus found the full solution:

vC(t) = VS + (V0 − VS)e−
t

RC

15



4.2 Parallel RC circuit with a current source

I R C

+

−

vC

To save time (and space): the differential equation we end up with is exactly the same as for the series
circuit above, with the sole difference that IR replaces VS, where I is the current source drive current,
and R is the parallel resistor’s resistance.
Since the resulting equation

RC
dvC
dt

+ vC = IR

is of the same form as the one for the series circuit, the solution is also the same:

vC(t) = IR + (V0 − IR)e−
t

RC

16



Chapter 5

Second-order circuits

5.1 Series RLC circuits

+
−VS

L

+ −vL

R

+ −vR

i

C

+

−

v

We know that the current i relates to the capacitor voltage:

i = C
dv

dt

Since this is a series circuit, that current goes through all elements.
By KVL, we can add up the voltage drops around the loop, with the proper sign. I’ll go clockwise, and
start in the bottom left:

−VS + vL + vR + v = 0

If we solve for VS:

VS = vL + vR + v

Now, let’s use the element laws for the inductor and resistor, and substitute them into the above:

VS = L
di(t)

dt
+Ri(t) + v(t)

17



We know that i(t) = C dv
dt

, so let’s substitute that back in. Let’s also differentiate, in case of the inductor,
to reduce the mess of nested differentiation operators:

VS = LC
d2v(t)

dt2
+RC

dv

dt
+ v(t)

There we go; we now have a second-order, linear, constant coefficient ordinary differential equation.1

We’ll use the same method to solve it as we did for the first-order ones, namely the method of particular
and homogeneous solutions. First we first the particular solution (any solution that makes the equation
true), then the homogeneous solution (a solution to the equation with the input drive VS set to 0), and
finally we add the two together to find the total solution.

As for the particular solution, just as in the first-order case, we try v(t) = VS and see that the two
derivatives both go to zero (as VS is a constant), and so we end up with

VS = VS

which tells us that VS indeed is a particular solution. On to the homogeneous one, i.e. the solution to

LC
d2v(t)

dt2
+RC

dv

dt
+ v(t) = 0

Again, like in the first-order case, we try the form

v(t) = Aest

where A and s are constants we’ll have to find later. So, we substitute Aest for v(t), and differentiate
where necessary, which gives us

LCAs2est +RCAsest + Aest = 0

We can cancel out a ton of the above, by dividing both sides by Aest:

LC��As
2
��est +RC��As��e

st +���Aest = 0

What remains is

LCs2 +RCs+ 1 = 0

Divide by LC throughout:

s2 +
R

L
s+

1

LC
= 0

We’ve thus arrived at the characteristic equation, which describes most details of the circuit’s behavior.
There’s a canonical form to write such an equation:

s2 + 2αs+ ω0
2 = 0

So, in the case of the series RLC circuit, the values of α and ω0 would have to be

α =
R

2L

and

ω0 =
1√
LC

1I just love these overly verbose classifications.
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α relates to the damping factor of the circuit (sometimes the damping factor, ζ =
α

ω0

, is used) - that is,

the ringing second-order circuits can produce will decay faster for a larger value of α. Meanwhile, ω0 is
the undamped resonance frequency of the circuit (in radians/second), the same as in undriven LC circuits.
However, this might not be the frequency of interest in a RLC circuit - more on that later.

Let’s get back to solving the differential equation. Remember, we only found the homogeneous solution -
we still haven’t figured out the values of s or A.
The next step would be to find the roots of the characteristic equation:

s2 + 2αs+ ω0
2 + 0

The quadratic formula will work nicely on this. The two roots are:

s1 = −α +
√
α2 − ω0

2

s2 = −α−
√
α2 − ω0

2

The full solution to the homogeneous solution will then be

vH = A1e
s1t + A2e

s2t

However, we’ve now found s1 and s2, so we can fill them in:

vH = A1e
(−α+

√
α2−ω0

2)t + A2e
(−α−

√
α2−ω0

2)t

Then, the total solution (prior to finding A1 and A2, and also prior to simplifying) is:

v(t) = VS + A1e
(−α+
√
α2−ω0

2)t + A2e
(−α−
√
α2−ω0

2)t

After some magic2 and making the definition ωd =
√
ω0

2 − α2, the total solution ends up looking like this,
for the case ω0 > α, i.e. the underdamped case:

v(t) = VI +K1e
−αt cosωdt+K2e

−αt sinωdt

Evaluating the above at t = 0 with the initial condition v(0) = 0 gives us:

0 = VI +K1

K1 = −V I

Evaluating at t = 0 with the other initial condition, i(0) = C
dv

dt
= 0, gives, after the differentiation and

substitution for t = 0:

0 = −K1α +K2ωd

We know that K1 = −VI :

0 = VIα +K2ωd

K2ωd = −VIα

K2 = −VIα
ωd

Thus, finally, the full equation that governs the capacitor voltage of the series RLC circuit, in the under-
damped case (ω0 > α) is:

2Sorry, but I don’t quite follow the entire process myself yet. Since this part was cut out from the lectures in order to
save time (after 14 videos going through this process so far), I will do the same.
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v(t) = VI − VIe−αt cosωdt−
VIα

ωd
e−αt sinωdt

Using the scaled sum of sines trig identity, we can turn this cosine minus sine business into a single cosine,
and end up with:

v(t) = VI − VI
ω0

ωd
e−αt cos (ωdt− arctan (

α

ωd
))

While the equation is rather involved, it’s still very clear that the two main features are a cosine multiplied
by a decaying exponential, which will give us exactly the kind of waveform we see in a damped second-order
system.

5.1.1 Summary

Since this section was by far the longest of this document so far, I thought a summary of the relevant
formulas could be useful. Remember that most of these only apply to series RLC circuits, though some
definitions (such as ωd) are universal.

Where v(t) denotes the capacitor node voltage in the circuit shown (far) above - also, remember that this
is for the underdamped case, i.e. ω0 > α:

v(t) = VI − VI
ω0

ωd
e−αt cos (ωdt− arctan (

α

ωd
))

where

α =
R

2L
rad/s

ω0 =
1√
LC

rad/s

ωd =
√
ω0

2 − α2 rad/s

Other formulas that may be useful are:

Q =
ω0

2α
(dimensionless)

Natural period =
2π

ω0

seconds

Natural frequency =
ω0

2π
=

1

2π
√
LC

Hz

The quality factor, Q, can (for now) be thought of as the approximate number of oscillations that will
occur before the ringing dies out due to the damping, though the actual meaning is more precisely defined.

One thing that is important to note, and that in truth should have been brought up in more detail, is that
for the special case where R = 0, the circuit becomes a pure LC circuit, which will (in theory) oscillate
forever. In practice, of course, parasitic resistances will make sure that doesn’t happen - unless the circuit
is superconducting.
Why does it oscillate forever? Well, it’s rather intuitive, at least if you accept that it will oscillate at all:
it oscillates until the energy stored in the circuit is small enough that we see the voltages in the circuit to
be constants. The only way energy stored is reduced at all is by resistances; without them, it rings forever.

Mathematically, this is easy to see from the above equations: Q =
ω0

2α
→∞ as 2α =

R

L
→ 0.
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Chapter 6

Sinusoidal Steady State, Impedance and
Filters

6.1 Sinusoidal Steady State

Instead of showing the entire, rather long path from a drawn circuit to the impedance model, I will take
considerable shortcuts by simply skipping some parts. The reason is that I don’t find it that important to
remember fully; any good book on the subject should show it, though. I’ll try to cover what is important
to remember, however!

Thus, the beginning of this chapter might be a bit hard to follow. However, this isn’t an electronics book
(which I would be very underqualified to write) - I assume that all readers already know most of this, and
just wanted a little refresher.
We’ll try to analyze this circuit, for sinusoidal input:

vI

R

C

+

−

vC

where vI is a sinusoidal input, e.g. VI cos (ωt).
So, let’s get started. We write down the differential equations governing the dynamics of this circuit:

RC
dvC(t)

dt
+ vC(t) = VI cos (ωt)

If this were anything like the time-domain RC circuit analysis for step inputs, we’d now go and find partic-
ular and homogeneous solutions for the circuit, add them, and solve for constants using initial conditions.
However, this would not be a very nice analysis due to the massive amount of trigonometry that would turn
out to be involved due to the sinusoidal drive. Instead, we’ll go down a different path, and see that doing so
brings us some rather massive advantages in simplicity - especially later on, when we’ve derived and under-
stood the impedance model, that removes the need to use differential equations for many kinds of analyses!

So, instead of analysing the circuit for the input signal VI cos (ωt), we’ll analyse it for the input Vie
st.

Our first analysis step is to attempt to find a particular solution that works with the given differential
equation, which we’ve now modified (by choosing a different input) to be:

RC
dvC(t)

dt
+ vC(t) = Vie

st
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Let’s try a solution of the form Vpe
st, and substitute that in:

RC
dVpe

st

dt
+ Vpe

st = Vie
st

Let’s carry out the differentiation:

RCVpse
st + Vpe

st = Vie
st

Let’s cancel out the est terms that are common to all terms:

RCVps��e
st + Vp��e

st = Vi��e
st

RCVps+ Vp = Vi

Rearrange, then solve for Vp:

Vp(RCs+ 1) = Vi

Vp =
Vi

1 + sRC

However, remember that we crossed out all the est terms. The full particular solution is

Vpe
st =

Vi
1 + sRC

est

Now, let’s assume that s = jω, where j is the imaginary unit j =
√
−1. We do the substitution, and get

the particular solution

Particular solution =
Vi

1 + jωRC
ejωt

Note that because this chapter deals with sinusoidal steady state analysis, we will ignore the homogeneous
solution as it relates only to transients, i.e. what happens in the circuit before it reaches steady state.

Now we have a complex number. Vp =
Vi

1 + jωRC
is the complex amplitude, which is an extremely useful

variable. We’ll see later that it can describe the entire frequency-domain behavior of the circuit to sinu-
soidal input, and most time-domain behavior as well.

However, remember that our goal was to find the response to sinusoidal input, not exponential input as
we’ve actually done! What is the connection?
The answer lies in Euler’s formula, which states

ejωt = cos (ωt) + j sin (ωt)

which can be proved e.g. via Taylor series.
Thus, we can take the real part of the exponential input, to yield the input we sought after:

Vi cos (ωt) = Re
[
Vie

jωt
]

where Re[z] gives the real part of the complex number z, i.e. Re[x+ jy] = x.
Thus, we can use a “inverse superposition” argument: for linear circuits, the response to the input Re[z]
should be of the form Re[f(z)]. That is, the real part of the output should be a function of the real part
of the input.
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6.1.1 Time-domain analysis

I promised earlier that Vp could describe the time domain behaviour of the circuit. Let’s see how! Also
note that we will soon see a much faster and easier method of writing Vp down, than to work with the
differential equations for a circuit.

The relation between Vp and the time-domain behavior of the circuit is:

vC(t) = |Vp| cos (ωt+ 6 Vp)

Note that we derived the time-domain behavior for the circuit simply by taking the magnitude and angle
of the complex amplitude Vp. However, the above equation only specifies the relation, without using circuit
values (i.e. R, C and Vi). Let’s calculate the magnitude and phase angles.

|Vp| =
∣∣∣∣ V i

1 + jωRC

∣∣∣∣ =
|Vi|

|1 + jωRC|
The magnitude of Vi is simply the absolute value, and so we’ll leave it as-is and assume it is positive.
The denominator is a complex number, and so we calculate the magnitude as always with complex numbers:

|a+ jb| =
√
a2 + b2

|1 + jωRC| =
√

1 + (ωRC)2

Combining the two answers:

|Vp| =
V i√

1 + (ωRC)2

Thus step one is complete. Next, let’s find the phase angle.
The angle of divided complex numbers subtracts (while magnitude divides). The angle of Vi, being fully

real, is 0. (The angle of a fully imaginary number is
π

2
, since the imaginary axis is the up/down axis, and

π

2
is the number of radians to rotate from the real (x) to the imaginary (y) axis.)

6 Vp = 6 Vi − 6 (1 + jωRC)

= 0− arctan (1, ωRC)

= − arctan (1, ωRC)

... where arctan is the two-argument arctan function. arctan (x, y) is equal to arctan (
y

x
) for some inputs,

but not all, which is why the two-argument one (also known as “atan2” in many programming languages)
is used; the regular form can’t differentiate between quadrants uniquely.

Thus, combining the time-domain equation with the now-known values of |Vp| and 6 Vp:

vC(t) = |Vp| cos (ωt+ 6 Vp)

vC(t) =
V i√

1 + (ωRC)2
cos (ωt− arctan (1, ωRC))

As for the frequency response, we can also calculate and plot the magnitude of the transfer function, i.e.
the ratio between the capacitor voltage and the input voltage.∣∣∣∣VpVi

∣∣∣∣ =

∣∣∣∣ 1

1 + jωRC

∣∣∣∣ =
1√

1 + (ωRC)2
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... and the same goes for the phase of the transfer function:

6
Vp
Vi

= 6

(
1

1 + jωRC

)
= 6 1− 6 (1 + jωRC) = 0− arctan(1, ωRC) = −arctan(1, ωRC)

Now that we know how to find the magnitude and phase of the complex amplitude rather easily (compared
to solving the differential equations!), let’s see if we can find an easier way to writing the expression down
in the first place, so that we can solve linear circuits with resistors, capacitors and inductors in no-time.

6.2 The Impedance Model

For the resistor, Ohm’s law applies equally well to the complex amplitudes of voltages and currents as it
does to the usual inputs:

Vr = Ir ·R

However, the interesting things turn up when we look at the capacitor and inductor. Let’s consider a lone
capacitor and its relation between current and voltage.

C

−

+

vC

iC

We know from earlier that

iC = C
dvC
dt

But what happens when we use complex amplitudes instead? Say the current is of the form Ice
st and the

voltage across it of the form Vce
st - what then? Well, let’s see. We start by substituting the values:

Ice
st = C

dVce
st

dt

Perform the differentiation:

Ice
st = CVcse

st

Cancel out the est terms from both sides, and solve for Vc:

Ic��e
st = CVcs��e

st

Ic = CVcs

Vc =
1

sC
Ic

Hmm, it looks like they have a very simple relation indeed! To simplify even further, let’s set Zc =
1

sC
:

Vc = ZcIc

Incredible! The voltage is proportional to the current through this Zc variable, just like a resistor’s voltage
drop is V = IR!

Zc is known as the capacitor’s impedance, and is frequency dependant: remember that Zc =
1

sC
, and

s = jω, where ω denotes the angular frequency of the input sinusoid. Therefore, we see that the higher

24



the frequency, the lower the impedance.
What this means is that the capacitor will have high impedance - which is similar (but not equal!) to high
resistance - to low-frequency signals, to the point where it completely blocks DC (ω = 0), but has a low
impedance for high-frequency signals. As the frequency increases, the capacitor impedance decreases, and
as ω →∞, the impedance goes to zero and the capacitor acts as a short circuit.

Let’s see how an inductor deals with this.

L

−

+

vL

iL

Again, we know that

vL = L
diL
dt

Let’s see what happens for complex input, where vL = Vle
st and iL = Ile

st:

Vle
st = L

dIle
st

dt

Same as before; we perform the differentiation, cancel out the est terms, and solve for Vl:

Vle
st = L

dIle
st

dt

Vle
st = LIlse

st

Vl��e
st = LIls��e

st

Vl = LIls

Vl = Il · sL

Again, the voltage is related to the current through a simple algebraic expression! The impedance of the
inductor is ZL = sL, where (again) s = jω.

Vl = ZLIl

This is an incredible powerful technique, as we’ll soon see. We can now write down the frequency (and
time) behaviour of circuits by inspection, without writing a single differential equation!
Impedances not only look like resistances (impedance times current equals voltage), but can be used in
the same way, to create things like voltage dividers using capacitors and inductors! This is the basis of
filters, which we’ll look at soon.
So, in summary, the relevant models are:

C

−

+

Vc

Ic

L

−

+

Vl

Il

R

−

+

Vr

Ir

Where the relations between voltage amplitudes and current amplitudes are given as

Vr = IrZR
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Vc = IcZL

Vl = IlZL

... and the impedences are given as

ZR = R

ZC =
1

jωC

ZL = jωL

These impedances can be used exactly as resistances. For example, in a series RC circuit, the current
through the circuit is given by

Vi
R + ZC

just as you would expect.

6.2.1 RC circuit example

Vi

R

ZC

+

−

Vc

Let’s analyze the above circuit, to find the voltage across the capacitor. The impedance is ZC = 1
sC

, and
we can use that to create a voltage divider relationship:

Vc = Vi ·
ZC

ZC +R
= Vi ·

1
sC

1
sC

+R

Let’s multiply out by
sC

sC
to clean things up:

Vc = Vi ·
1

1 + sRC

This is another HUGE result; look at the denominator: what he have there is the characteristic equation
for the series RC circuit! We can use that to find everything we want to know about the time-domain
behavior of the circuit, such as the natural frequency, bandwidth, damping factor and more - without a
single differential equation; not to mention that the same technique works in more complex circuits, such
as a series-parallel combination of resistors, capacitors and inductors!

6.2.2 Impedance Model Summary

Before trying a few more complex circuits, let’s summarize the method we’ll use, and clarify the meaning
of a few variables.

1. Replace sinusoidal sources by their complex amplitudes. For example, vI cos (ωt) would simply
become Vi, which represents a complex amplitude (capital letter, small subscript).
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2. Replace the elements with their impedance models; resistors don’t change, capacitors turn in to

ZC =
1

sC
“resistors” and inductors into ZL = sL “resistors”, where s = jω.

3. Calculate the complex amplitudes for the nodes that matter, using the normal circuit analysis meth-
ods e.g. the node method, Thevenin equivalents, etc, treating impedances exactly as resistances.

4. If necessary, find the time-domain behavior from the complex amplitudes: if you have the complex
amplitude Va, the time-domain behavior of that amplitude is described by

vA(t) = |Va| cos (ωt+ 6 Va)

6.2.3 Finding the characteristic equation

What we generally want to do here is to write the expression as a proper polynomial: no
1

s
terms are

allowed, and the denominator must be of a higher degree than the numerator. Note that there may be s
terms in the numerator, which are then to be ignored, if the polynomial is in proper form.
As an example, let’s look at the parallel RLC circuit, to avoid overfocusing on the series one.

Is R C L

+

−

Vo

Note that the source is a sinusoidal current source.
The impedance Z seen by the current source is given by

Z = R || 1

sC
|| sL =

1
1
R

+ 1
sL

+ sC

Let’s start off by multiplying everything by sL, to get rid of the improper s:

Z =
sL

1
R
sL+ 1 + s2LC

Next, divide by LC to get s2 by itself (as usual, we want the form s2 + 2αs+ ω0
2):

Z =
1
C
s

1
RC
s+ 1

LC
+ s2

Z =
1
C
s

s2 + 1
RC
s+ 1

LC

Are we done? Well, the s2 is on its own, we have a term multiplying s, and a term independant of s. Also,

we have nothing on the form
1

s
1, and the denominator is of higher degree than the numerator. We’re done!

Thus, comparing the denominator with the canonical form s2 + 2αs + ω0
2, we see that, for the parallel

RLC circuit:

α =
1

2RC
rad/s

1Except the entire denominator, of course.
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ω0 =
1√
LC

rad/s

f0 =
1

2π
√
LC

Hz

∆ω = 2α =
1

RC

Q =
ω0

2α
=

RC√
LC

6.2.4 Series RLC circuits

Vi

L

+ −Vl

C

+ −
Vc

R

+

−

Vr

I

Say we want to find the voltage amplitude across the resistor for this circuit. Doing so is very easy; we
use a voltage divider again:

Vr = Vi ·
R

R + ZC + ZL
= Vi ·

R

R + 1
sC

+ Ls

Easy! We can clean it up a bit by multiplying by
s

L
(why did I pick

s

L
? Because I know what will happen.):

Vr = Vi ·
R
L
s

R
L
s+ 1

LC
+ s2

Note that we have again found the characteristic equation of this circuit (in the denominator), again
without writing a differential equation!
Also, if we want the time domain behavior, we substitute s = jω into the first equation above, rationalize
the denominator by multiplying top and bottom by the complex conjugate of the bottom, and take the
magnitude and phase:

vR(t) = |Vr| cos (ωt+ 6 Vr) =

∣∣∣∣Vi · jωRC

1− LCω2 + jωRC

∣∣∣∣ cos (ωt+ 6

(
Vi ·

jωRC

1− LCω2 + jωRC

)
)

=
ViωRC√

(1− LCω2)2 + (ωRC)2
cos (ωt+ (

π

2
− arctan (1− LCω2, ωRC)))

... where the magnitude is given by the magnitude of jViωRC divided by the magnitude of the denominator,
a complex number: such a magnitude is given by

√
a2 + b2 where a is the real part and b the imaginary

part.
The angle is given by the angle of the numerator minus (not divided by) the denominator; the angle of

the numerator is
π

2
because jViωRC is not complex, but fully imaginary, and thus located 90 degrees (

π

2
radians) rotated from the origin. The angle of the denominator is given by arctan (a, b) where a and b are
the real and imaginary parts, respectively.
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6.3 Filters

Filters are a great application of the impedance model. Filters are circuits (some simple, some complex)
that attenuate certain frequency bands. For example, a low-pass filter removes high frequencies, but lets
low frequencies through.

Here is a simple RC low-pass filter (the part values might be unrealistic, but they make for round numbers
in the results):

Vi

50

π
Ω

1µF

+

−

Vo

Filter characteristics are often shown as a pair of plots, known as Bode plots. One shows the magnitude
as a function of frequency, and the other the phase as a function of frequency.
For example, see these Bode plots of a low-pass filter:

100 1000 104 105 106
Hz

0.02

0.05

0.10

0.20

0.50

1.00

ÈVo�ViÈ

29



100 1000 104 105 106
Hz

-80

-70

-60

-50
-45
-40

-30

-20

-10

0

Degrees

The filter above has a break frequency (also known as corner frequency, -3 dB point or
1√
2

point) of

10 kHz, which means frequencies higher than 10 kHz will get attenuated. As you can see, however, the
attenuation starts off lower than 10 kHz. The break frequency is the frequency where the magnitude

drops to 3 dB below unity (1x the input), which equals
1√
2

times unity, here shown by a pair of dotted

lines. The break frequency is also where the phase shift of the signal is exactly -45 degrees (for this circuit).

There are 4 main types of filters: low-pass, high-pass, band-pass and band-stop. The names explain them
quite well; low-pass filters let low frequencies through, but blocks higher ones, while high-pass is the exact
opposite. Band-pass lets a band of frequencies through, but blocks both lower and higher frequencies.
Band-stop are opposite of band-pass; they let everything except a band of frequencies through.

6.3.1 Series RLC band-pass filter

Since producing good-looking Bode plots for this document takes a while with my current process, I’ll
only make a few, by focusing on a RLC band-pass filter.

Vi

L
C

R

+

−

Vo

First, let’s think about how this filter works intuitively.
The inductor will let low frequencies through, but block high frequencies. Thus, at high frequencies, most
of the circuit’s voltage drop will be across the inductor, so the filter blocks them.
The capacitor will let the high frequencies pass with low impedance, but instead block low frequencies.
However, there is a band of frequencies somewhere in the middle that they both let through, so this is a
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band-pass filter.

Since this is a series circuit, we can yet again use a simple voltage divider relation to write the transfer

function
Vo
Vi

:

Vo
Vi

=
R

R + jωL+ 1
jωC

(Side note: the transfer function, also system function, is often denoted H(s) or H(jω).)
Let’s clean it up a bit by multiplying through by jωC.

Vo
Vi

=
R

R + jωL+ 1
jωC

· jωC
jωC

Vo
Vi

=
jωRC

1− ω2LC + jωRC

We can now calculate the magnitude and phase of the transfer function, and plot it.∣∣∣∣VoVi
∣∣∣∣ =

ωRC√
(1− ω2LC)2 + (ωRC)2

6
Vo
Vi

=
π

2
− arctan (1− ω2LC, ωRC)

Here are the Bode plots for this circuit for L = 1µH, C = 1µF and R = 20Ω:
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The dotted red line is at
1√
2

. The dotted vertical lines are, from left to right, the low-end break frequency

f1, the resonant frequency f0 =
1

2π
√
LC

and the high-end break frequency f2.

Note that the f notation instead of ω indicates that the frequencies are in hertz, rather than rad/s.
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The dotted red lines are at 45, 0 and -45 degrees. The dotted vertical lines are, from left to right, the

low-end break frequency f1, the resonant frequency f0 =
1

2π
√
LC

and the high-end break frequency f2.

These plots show two break frequencies, at roughly 7.94 kHz and 3.19 MHz, respectively. (I have no
idea where such a filter could be useful, however; the circuit values could’ve been better chosen for this
example!)

The break frequencies can be found by setting the magnitude equation equal to
1√
2

and solving for ω

(keep in mind that ω is in rad/s; the plots are in hertz).
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6.3.2 Q and “peakiness”

Something interesting happens if we observe the capacitor voltage of a high-Q RLC circuit near the
resonant frequency.

Vi

L
C

+ −
Vc

R
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The above Bode plot shows the magnitude of the capacitor voltage/input voltage ratio for the values

R = 7.5Ω, L = 0.75 mH, c = 400 nF, which causes f0 =
1

2π
√

0.75 · 10−3 · 400 · 10−9
≈ 9.19 kHz and

Q =
0.75 · 10−3

7.5
√

0.75 · 10−3 · 400 · 10−9
≈ 5.7735.

The dotted red lines are at
1√
2

and Q, while the dotted grey line is at f0 ≈ 9.19 kHz.

This phenomenon is actually not as strange as it may appear. Q is the ratio of stored energy in a circuit to
the energy dissipated per cycle, so at high Q values, more energy is added by the source than is dissipated
by the resistor, so the voltage builds up over time, to be greater than the input amplitude (specifically Q
times greater).
Let’s derive this mathematically. Again, this was for the voltage over the capacitor, so we need to calculate
the magnitude of that. Yet again we used a voltage divider relation:

Vc
Vi

=
1
sC

1
sC

+ sL+R

Multiply across by sC to clean up:

33



Vc
Vi

=
1

1 + s2LC + sRC

Let’s divide through by LC, too:

Vc
Vi

=
1
LC

s2 + R
L
s+ 1

LC

There’s the characteristic equation again. We know (from memory, but also from comparing the above to

s2 + 2αs+ ω0
2) that

1

LC
= ω0

2, and the same goes for 2α =
R

L
.

Vc
Vi

=
ω0

2

s2 + 2αs+ ω0
2

s = jω; however, let’s evaluate the above expression at the resonant frequency, i.e. ω = ω0, so we make
the substitution for s = jω0:

Vc
Vi

=
ω0

2

(jω0)2 + 2αjω0 + ω0
2

j2 is −1, so:

Vc
Vi

=
ω0

2

−ω0
2 + 2αjω0 + ω0

2

Each term has an ω0, so we can cancel them out.

Vc
Vi

=
ω0

−ω0 + j2α + ω0

Also, note that we have −ω0 + ω0 remaining, so we remove those as well:

Vc
Vi

=
ω0

j2α

We then take the magnitude of this expression, that (remember what we’re doing!) shows the ratio of the
capacitor voltage to the input, at the circuit’s resonant frequency. The only thing that happens is that j
disappears, as its magnitude is 1: ∣∣∣∣VcVi

∣∣∣∣ =
ω0

2α
= Q

Yup! It turns out that the Bode plot is correct: the magnitude of the capacitor voltage at resonance is
exactly Q times greater than Vi!

6.3.3 Selectivity and bandwidth

The selectivity of a filter is given by
ω0

∆ω

where ∆ω is the bandwidth of the filter:

∆ω = ω2 − ω1

where ω1 and ω2 are the
1√
2

points of the filter (see above).

For the filter above:

ω0 =
1

2π
√
LC

= 159.2 kHz
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ω1 = 7.938 kHz

ω2 = 3.191 MHz

∆ω = ω2 − ω1 = 3.183 MHz
ω0

∆ω
≈ 0.05

Let’s try to find
ω0

∆ω
in terms of circuit parameters, e.g. R, C, L and so on.

To begin with, we set the magnitude equation equal to
1√
2

. We solve it, and take the two positive solutions,

ω2 and ω1, and subtract them. The result is the bandwidth, ∆ω.

Of course, we already know that for a series RLC circuit, ω0 =
1√
LC

.

ωRC√
(1− ω2LC)2 + (ωRC)2

=
1√
2

The solutions ω1 and ω2 to the above are quite messy, but when subtracted, the end result is very simple:

∆ω = ω2 − ω1 =
R

L

Nice! Let’s confirm that the previous result for ∆ω matches this one:

∆ω = ω2 − ω1 = 3.191 MHz− 7.938 kHz =
20Ω

2π · 1µH
Note that we need to additionally divide by 2π to convert from rad/s to hertz. And indeed, the above is
true, excepting for rounding errors.

However, there is an additional thing to note here. Remember that 2α =
R

L
for a series RLC circuit! Thus

the bandwidth ∆ω is equal to 2α.
Further, remember the definition of Q for the series RLC circuit:

Q =
ω0

2α

We’ve just shown that ∆ω = 2α, so the selectivity of a circuit is given by Q!
Or, in circuit parameters:

Q =
L

R
√
LC

6.3.4 Designing filters

Instead of simply analyzing existing circuits, let’s design a band-stop filter. Let’s say we want it to stop
frequencies in the range 1 - 10 kHz. In other words, we want the break frequencies to be at 1 and 10 kHz,
respectively, which gives a bandwidth ∆ω of 9 kHz.

Again, let’s approach this intuitively. Clearly, a resistor combined with either a capacitor or inductor
won’t cut it, since such a circuit can only block either low or high frequencies (as the (ideal) resistor blocks
all frequencies equally), not any sort of a combination. Thus we need either a RLC circuit, or some circuit
consisting of multiple capacitors/multiple inductors. One solution would indeed be an RLC circuit, where
we take the output over the LC pair rather than over the resistor as we did in the band-pass filter above:
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Vi

R

L

C

+

−

Vo

In this circuit, the LC voltage will be high either when the frequency is low (the capacitor drops a lot of
voltage) or high (the inductor drops a lot of voltage), but low at some frequency band in between. Great!
Let’s figure out the part values we want, and all that. First, we need to figure out the circuit’s transfer
function:

Vo
Vi

=
sL+ 1

sC

R + sL+ 1
sC

where s = jω. We multiply through by sC to get rid of the nested fractions:

Vo
Vi

=
s2LC + 1

1 + sRC + s2LC

Hmm, let’s clean up that s2 term in the denominator by dividing by LC throughout.

Vo
Vi

=
s2 + 1

LC
1
LC

+ R
L
s+ s2

There’s the characteristic equation for this circuit (in the denominator). If we match it up with the
canonical form s2 + 2αs+ ω0

2, we find that

2α =
R

L

α =
R

2L

ω0
2 =

1

LC

ω0 =
1√
LC

This isn’t really news, since we knew the values of α and ω0 for the series RLC circuit already, but it’s
nice to know we can find them easily. Let’s find out the values of Q and ∆ω, the bandwidth:

Q =
w0

2α
=

1√
LC
R
L

=
L

R
√
LC

∆ω = 2α =
R

L

We can use these values to find the part values we need. ω0 is the center frequency of the filter, so if we
calculate the center frequency we want and set that equal to ω0, that should be a start. After that, we
can set ∆ω equal to the bandwidth we wanted.
Two equations, three unknowns, but to make our lives easier we can simply choose one value ourselves.
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Let’s calculate the center frequency. This isn’t quite as simple as taking the arithmetic mean
f1 + f2

2
,

which would give us
1000 + 10000

2
= 5500 Hz. Instead, we need to take the geometric mean, which is

defined as n
√
a1 · a2 · · · an−1 · an - that is, multiply the numbers together, and take the nth root of the

product, where n is the count of numbers. So, the center frequency we want is computed as:

ω1 = f1 · 2π = 1000 · 2π

ω2 = f2 · 2π = 10000 · 2π

ω0 =
√
w1 · w2 =

√
(1000 · 2π)(10000 · 2π) = 2000π

√
10

Now that we have one of the two values we wanted, let’s find the bandwidth we want. That one’s easy -
it’s just the difference between the higher and the lower corner frequencies, in this case 10 kHz and 1 kHz,
respectively.

∆ω = ω2 − ω1 = 10000 · 2π − 1000 · 2π = 9000 · 2π

Now all that remains is to solve the system of equations we get for these two, setting our desired ω0 equal
to the circuit equation, and doing the same for the bandwidth:

1√
LC

= 2000π
√

10

R

L
= 9000 · 2π

If we solve these, we get

L =
R

18000π
, C =

9

20000πR

So, for R = 680Ω (a chosen value, not a calculated one), the values are roughly L = 12.025 mH and
C = 210.65 nF.
Here are the Bode plots for the resulting filter:
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As with the previous plots, the dotted red line is at
1√
2

and the dotted grey lines are at the break

frequencies, i.e. 1 and 10 kHz.
The Q of this filter is approximately 0.3514.
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Note the discontinuity in the plot, due to us restricting the valid range of phase values between +90 and
-90 degrees.
Without the discontinuity, the phase plot looks like this:
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It looks like our filter works! However, it’s not perfect; the inductor value is relatively high. We could get
the same filter with other values, but the capacitor value would have to increase instead.
There are other ways to make band stop filters. In particular, op amps will make it easier.
All in all, however, it does pretty much work - not bad for a first-ever try in filter design, especially
considering that low-pass/high-pass filters with only two components are quite a bit easier.
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6.4 Summary of SSS, impedance and filters

This chapter dealt with the steady state workings of circuits with sinusoidal input. We learned that, by
representing this as an exponential input, we can turn the differential equations governing these circuits
into simple algebraic relations: the impedance model. In doing so, we not only got access to easy tools
for frequency domain analysis of circuits, but also a few that also help us in the time domain, such
as the equation for converting a complex amplitude, used in the impedance model, to a time domain
representation of the circuit:

vX(t) = |Vx| cos (ωt+ 6 Vx)

The impedances (denoted by Z) for the three common passive circuit elements2 are:

Resistor: ZR = R

Capacitor: ZC =
1

jωC

Inductor: ZL = jωL

The most important parameters for filters are:
(Where specific circuit parameters are used, they are for the series RLC circuit. The parameters themselves
(α, ∆ω etc.) apply to all circuits, however.)

Resonant angular frequency: ω0 =
1√
LC

rad/s

Resonant frequency: f0 =
1

2π
√
LC

Hz

Damping factor: α =
R

2L
rad/s

Bandwidth: ∆ω = ω2 − ω1 = 2α =
R

L
rad/s

Q =
ω0

2α
(dimensionless)

Remember that Q can be thought of as multiple things. For a frequency-domain analysis, it is indicative
of the how selective the filter is. High Q means high selectivity.
For time-domain analyses, Q indicates how long an underdamped system will ring; also, systems with

Q <
1

2
are overdamped and will not ring at all.

2There are four such basic elements; the fourth is the memristor, which as of this writing is still under development, with
commercial release slated for 2013.
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Chapter 7

Operational Amplifiers

7.1 Intro

Operational Amplifiers, or op amps, are an amplifier abstraction; that is, we can use it without knowing
about its insides.
The schematic symbol looks like this:

−

+v+

v−
vo

12 V

Above is a single-supply op amp, that can output voltages between 0 and 12 volts, with respect to ground.
Dual-supply op amps are also common; in that case, you’d replace the ground above with -12 volts, and
have the ground (which is then not directly connected to the op amp) where the two rails “meet”, i.e.
output range is from 12 volts above ground all the way down to 12 volts below ground.
That way, the op amp can output negative voltages (again with respect to the circuit ground), which is
often required when dealing with signals such as audio, which are ground referenced and symmetric around
the 0 volt axis.

The ideal op amp has infinite input impedance, and zero output impedance. Thus, no current flows into
the input terminals; all current from the output terminal comes from the power terminals.
In many cases, we don’t really care about showing the supply connection explicitly, and instead use the
following symbol:

−

+v+

v−
vo

This document will use the latter symbol from now on.

Op amps use a differential input. That is to say, neither of the two input connections is necessarily ground,
and the amplifier amplifies the difference between the two input ports. That is, ideally,

vo = A(v+ − v−)

where A is the amplifier’s voltage gain. In the ideal op amp model, A → ∞. In real op amps, A is often
on the order of 100,000 or more. Needless to say, most of the time, we don’t want to amplify a signal
that much - even a input voltage difference as tiny as 12µV would be enough to drive the output to the
maximum 12 V (12µV ·106 = 12V ) for an amplifier with A = 106, which most certainly exist on the market.
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So, to summarize what we’ve seen so far:

1. The op amp is a differential amplifier ...

2. ... that outputs a ground-referenced voltage.

3. Its gain is extremely high (ideally infinite), often on the order of 10000 to a million, or even higher.
If we want less gain, we’ll have to take care of that outside the abstract “amplifier box” that is the
op amp.

4. Op amps can be powered by a single supply (a positive voltage and ground) or a dual supply (a
positive and a negative voltage, with ground being in between the two). There are op amps made
specifically for either of these two, though many works in either configuration.

To analyze circuits with ideal op amps, we model them as a VCVS, that is, a voltage-controlled voltage
source. Again, no current flows into the input terminals, so we model them as open circuits.

v+
i+ ≈ 0

v−
i− ≈ 0

+
−

+

−
vo

Since real-life op amps are powered by a power supply (rather than being ideal sources themselves), they
can never output a voltage that is higher than that of the power supply. Thus, when the difference between

the inputs is greater than
Power supply voltage

Gain
, the op amp saturates, and the output stays close to the

power supply rail.
Here’s a plot of an op amp’s transfer function, with a gain of 106:

-12ΜV -6ΜV 6ΜV 12ΜV
vi

-12V

-6V

6V

12V

vo

Note the extreme difference in scale between the axes: the vi axis is in microvolts, while the vo axis is in
volts. The op amp behaves linearly as long as the gain multiplied by the input voltage difference is less
than the power supply voltage (we call this the active region, or sometimes the linear region), but saturates
whenever the voltage difference is greater.
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Most op amps can’t bring the output very close to either power supply rail; an op amp powered by a ±12
V supply can usually swing between roughly -11 and +11 volts, or thereabouts. Therefore, an op amp
will generally saturate before it the power supply voltage. Op amps which can output very close (usually
within a few millivolts) of the power rails are called rail-to-rail output op amps. There are also rail-to-rail
input and rail-to-rail input/output (RRIO) op amps.

7.2 Noninverting amplifier

Let’s use an op amp to build a noninverting amplifier, one of the simpler (and perhaps more common)
uses of an op amp. This configuration uses a resistive divider between the output and the v− terminal to
limit the gain to more usable values. This also has the huge advantage of making the op amp very stable,
as opposed to its “raw” form, where the gain A can vary extremely much for pretty much no discernable
reason.
It looks something like this:

−

+
v+
v−

v−
vI

vo

R1

R2

As always, vo is ground-referenced, though that will not be shown explicitly here or in future circuit
diagrams.
Let’s analyze this circuit. First, we know that the op amp input/output relation is, always,

vo = A(v+ − v−)

Let’s find the values of v+ and v− for this circuit.
v+ is simply our input voltage vI .
v− is given by a simple voltage divider between vo and ground, so

v− = vo ·
R2

R1 +R2

(Remember that v− is an open circuit; the input impedance is infinite, and the connection there doesn’t
affect the voltage divider ratio.)

Let’s substitute these values back into the first equation, and get:

vo = A(vI − vo ·
R2

R1 +R2

)

vo = AvI − Avo ·
R2

R1 +R2

We have vo terms on both sides; let’s collect all vo terms on the left-hand side:

vo + Avo ·
R2

R1 +R2

= AvI
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vo(1 + A · R2

R1 +R2

) = AvI

Now we can simply divide both sides by the expression multiplying vo and we’re pretty much done:

vo =
AvI

1 + A · R2

R1+R2

Note that if A · R2

R1 +R2

� 1, we can ignore the 1 term without losing any noteworthy amount of precision.

For example, if A = 106, R1 = 3000 and R2 = 1000, which gives a gain of 3.999984, the value we get using
the approximation (ignoring the 1) is exactly 4. Such tiny errors don’t really matter to us, so we can say
that

vo ≈
AvI

A · R2

R1+R2

Note that we can now cancel out the A terms!

vo ≈
vI
R2

R1+R2

= vI ·
R1 +R2

R2

Therefore, this configuration gives a voltage gain of almost exactly
R1 +R2

R2

= 1 +
R1

R2

, as long as we

make sure that A · R2

R1 +R2

� 1 is true, by making sure we never make R1 much, much bigger than

R2. However, even when R1 is 1000 times greater than R2, the approximation works out quite well: for
A = 106, R1 = 106 Ω and R2 = 1000 Ω the error is about 0.1%. Such a configuration would give a gain of
roughly 1000.

So, this circuit works! It gives as a gain we can set via simple resistor values, and thus the op amp gain
A is virtually irrelevant to this circuit, as long as it’s very large.
The question is, though, how does it work? The answer is that the resistor divider connected to the
inverting input creates a negative feedback loop.
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7.3 Negative feedback

Negative feedback is a quite simple concept. This explanation may be a bit confusing at first, but think
it through carefully and you should get it - and when you do, you’ll agree that it’s simple! I’ll copy the
schematic from above for convenience:

−

+
v+
v−

v−
vI

vo

R1

R2

Let’s think about how this circuit works. Say vI is a static value of 5 volts, and R1 = R2 (in which case
their actual values won’t matter). The node voltage v− will be exactly half of vo. vo, in turn, will be

(according to the gain equation we found) vI ·
R +R

R
= 2 · vI .

So, to begin with, we have

vI = v+ = 5V

vo = 2 · vI = 10V

v− =
vo
2

= 5V

... Well, v+ 6= v−, but they’re very, very close to equal. If they were exactly equal, vo would be the gain
times 0 (A(v+ − v−) = 106(5 − 5) = 0), which clearly isn’t the case here. The difference depends on the
op amp’s gain A, but will be on the order of microvolts for a gain of 106. For now, we’ll consider them
equal, to drive home the point of negative feedback. In reality, vo is just ever so slightly different than 2 ·vI .

So, right now, v+ = v− = 5V , and vo = 10V . Now, let’s think about what would happen if, for whatever
reason (op amp instability, external noise, etc.) the voltage at node vo suddenly increased to, say, 12 volts,
without a change in the input.
Clearly, the voltage v+ would remain unchanged; it will always stay at 5 volts due to the voltage source
being directly connected there.
v−, on the other hand, is half of vo, and so that node would become 6 volts.
So now, after this output voltage bump, we have v+ = 5, v− = 6 and vo = 12. What happens then?

Well, again, we have the op amp equation: vo = A(v+ − v−) = A(5 − 6) = −A. In words, the op amp
would try, as best it could, to drive the voltage vo down to −106 volts (using the gain A = 106 we’ve been
using so far). Needless to say it couldn’t, due to the limited power supply, but it would try really hard to
bring the voltage at the output node down.
Let’s say it managed to drive the output down to 8 volts in a short time period. At that point, v+ = 5V ,

v− =
8

2
= 4V , which means the op amp would try to drive the output up really hard, since v+ > v−, and

so on.
In practice, the output wouldn’t fluctuate this much; rather, the reaction would be fast enough that the
change virtually doesn’t happen in the first place. This can certainly lead to unwanted oscillations, but
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that topic is a bit too advanced for this section and chapter.

The important point here is that the negative feedback loop causes the op amp to do whatever it can
on the output to keep the two inputs very close to each other. If the output rises too high, causing v−
to increase above v+, it tries to reduce the output voltage to compensate. If the output drops too low,
causing v− to drop below v+, it tries to increase the output voltage to compensate.
This is a negative feedback loop, a concept which can be applied to many situations, including many not
in electronics.
In negative feedback, a gap between the output and expected output will be used to reduce this gap, and
bring the output closer to the expected value. Therefore negative feedback helps the system become stable.

Positive feedback is, as one might expect, the opposite. With positive feedback, a small gap between
the expected and actual values will be used to create an even bigger gap, which in turn will increase the
amount of feedback, and make the gap larger yet, etc. A common example is when a microphone picks
up sound from a nearby speaker, causing the sound from the microphone to be sent to the speaker, which
leads to more sound being picked up by the microphone, increasing the volume in a loop until only an
extremely loud noise remains.

7.4 Virtual short/virtual ground

When we have an op amp with negative feedback (and only when we have negative feedback!), the feedback
causes v− to be almost equal to v+. We can show this by rearranging the gain equation:

vo = A(v+ − v−)

v+ − v− =
vo
A

If we have a typical op amp with a very high gain, let’s continue assuming 106, this means that for vo in
the typical range of ±20V or less, the difference between v+ and v− will never be larger than on the order

of
20V

106
= 20µV .

Since a short circuit means a zero (or, with wires that have resistances, just a very small) voltage difference,
this is referred to as a virtual short, or (especially when v+ is tied to ground) as a virtual ground.
This leads to us having three useful constraints when dealing with op amp circuits with negative feedback:

i+ ≈ 0

i− ≈ 0

v+ ≈ v−

When combined, these constraints give rise to a new, very easy method of analysis for these circuits, as
we’ll see in the following sections.
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7.5 Op amps as buffers

Let’s see what happens if we take the noninverting amplifier in the section above, and instead of coupling
vo to v− through a voltage divider, we simply connect them with a wire.
Since this connection provides negative feedback, we can analyze it extremely easily using the virtual short
method outlined above.

−

+
v+
v−

v−
vI

vo

First, we note that v+ = vI . Via the virtual short, this means that v− ≈ vI . Since vo = v− via the wire
they share, we draw the conclusion that vo ≈ vI . Well, that was quick!

This circuit is known as a buffer, or source follower. It presents a very large (ideally infinite) impedance
towards the input vI , so that only a very small current is drawn. However, the op amp’s output can deliver
an ideally infinite current (which is very far from true in practice, as signal op amps, as opposed to power
op amps, are often limited to less than 50 or so milliamps).
However, even if the op amp were to be limited to a 10 mA output current, the buffer could still be
useful, as many voltage sources such as sensitive sensors may be unable to provide even 1 mA without
negative effects. Thus, even a trivial task such as connecting the sensor to some reader, perhaps an ADC
(analog-to-digital converter) in a microcontroller, may not work without buffering the voltage first.

We can also build inverting buffers; see the next section.
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7.6 Inverting amplifier

Another amplifier topology that uses negative feedback is the inverting amplifier, which causes e.g. a 1
volt signal to become −1 ·G at the output, where G is the circuit’s gain, set by R1 and R2.

−

+

R2
i

+
−vI

v−

R1

+ −vR1

i

vo

Since this circuit also uses negative feedback, we can use the virtual short method to analyze it quickly.
First, we note that v+ is tied to ground, i.e. 0 volts. Therefore, by the virtual short constraint, v− will
be approximately 0 volts. Since by our definitions no current flows into the inverting input (i− = 0), and

we take v− = 0, the current i through R2 must be simply
vI − 0

R2

. Since, again, no current flows into the

inverting input, the same current i must flow through R1 as they are then in series.
Therefore, the voltage drop across R1 is that current times the resistance, or

vR1 =
vI
R2

·R1

The current flows left to right (because of vI being the driver towards the inverting input at 0 volts), which
means the positive side of the drop is to the left of R1 (see the above circuit). Therefore, the node vo is
equal to the voltage at v− minus that resistor drop:

vo = 0− vI
R2

·R1 = −vI ·
R1

R2

That concludes our analysis! The circuit is indeed inverting, and the (negative) gain is simply
R1

R2

.

For the record, the full expression that governs the behavior of this circuit, without the simplifications, is

vo = − AvIR1

R1 +R2 + AR2

... from an analysis that was performed, but was not outlined in these notes.
As A→∞, the R1 +R2 term in the denominator becomes irrelevant, and expression reduces down to one
where we can cancel out the As:

vo ≈ −
��AvIR1

��AR2

= −vI ·
R1

R2

Note that if R1 = R2, this circuit simply inverts the input, and is therefore an inverting buffer, or unity
gain inverting amplifier, which can certainly be useful.

The input impedance of this circuit, that is,
vI
iI

, where iI is the current flowing from the input voltage

source, is

Ri =
R1

A+ 1
+R2

Thus, as A→∞ (or just becomes “very large”), the first term is generally irrelevant, and we can say that
Ri ≈ R2.
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7.7 Op amp subtractor

Let’s analyze this circuit:

−

+

R1
i

+
−v2

v−

R2

R1

+
−v1

R2

+ −vR2

i

vo

As with the rest of the op amp circuits we’ve analyzed, this one uses negative feedback (see R2), so we
will again use the virtual short method to analyze it. However, this analysis is slightly more complex than
the previous ones, due to more algebra at the end.
Anyway, let’s get started.

Since the noninverting (+) input doesn’t draw any current, the voltage at v+ is given by the voltage divider
formed by the v1 - R1 - R2 series circuit:

v+ = v1 ·
R2

R1 +R2

By the virtual short method, v− = v+:

v− = v+

Therefore, since we know v− and v2, we can calculate the current through R1, which we’ll simply call i:

i =
v2 − v−
R1

Note that, since the inverting (−) input draws no current, all of this current must flow through R2 as well
(see the circuit diagram). Therefore, the we can easily calculate the voltage drop across R2 as current
times resistance, or

vR2 =
v2 − v−
R1

·R2

By know, we know v−, and we know the voltage drop across R2. Since that voltage drop is positive
“towards the left”, vo will be v− minus the drop across R2:

vo = v− − vR2

vo = v− −
v2 − v−
R1

·R2

Let’s gather the v− terms together:

vo = v−(1 +
R2

R1

)− v2
R1

·R2

vo = v−(1 +
R2

R1

)− v2 ·
R2

R1
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Let’s substitute in v−; remember, it’s equal to the expression we have for v+:

vo = (v1 ·
R2

R1 +R2

)(1 +
R2

R1

)− v2 ·
R2

R1

What a mess. Let’s rewrite 1 +
R2

R1

:

vo = (v1 ·
R2

R1 +R2

)(
R1 +R2

R1

)− v2 ·
R2

R1

Aha! Now we can cancel out those R1 +R2 terms:

vo = v1 ·
R2

R1

− v2 ·
R2

R1

vo =
R2

R1

(v1 − v2)

As promised in the section title, this is an op amp subtractor circuit. It calculates v1 − v2, scaled by the
ratio of R2 to R1.

7.8 Summing amplifier

Since the previous section covered an op amp subtractor, let’s cover an adder, usually called a summing
amplifier :

−

+

RF

vo

RS

v−

RI+
−v2

RI

+
−v1

Yet again, this circuit uses negative feedback, so we can use the virtual short method.
First, we can figure out v+. Since no current passes through the noninverting (+) input, we can find v+
by analysing the v1 - RI - RI - v2 subcircuit.
Since it’s linear, we can use superposition, and figure out the voltage due to v1 acting alone (v+1) and v2
acting alone (v+2). To use superposition, we “set one source to zero” at a time, which for voltage sources
means shorting it out. For v1:

v+1 = v1 ·
RI

RI +RI

=
v1
2

(since the resistors have the same value.)

Similarly, for v2:

v+2 = v2 ·
RI

RI +RI

=
v2
2

So, the sum of the responses will be v+:

v+ =
v1 + v2

2
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By the way, note that if the resistors had unequal values, the above would change. Not only would they
not be divided by exactly two, but we would get a weighted average, since the top resistor in this schematic
is in the numerator for the v2 divider, while the bottom resistor is in the numerator for v1.
If we relabel the top resistor R1 and the bottom resistor R2, and set R1 = 1000, R2 = 3000:

v+ = v1 ·
R2

R1 +R2

+ v2 ·
R1

R1 +R2

=
3v1
4

+
v2
4

After that aside, let’s get back on track. We found v+, and via the virtual short method, v− = v+.

There are several ways to find vo from here, but the node method gives a solution with only minor algebra.
We set up a node equation for v−:

v−
RS

+
v− − vo
RF

= 0

Move vo to the right-hand side and multiply both sides by RF :

RFv−
RS

+ v− = vo

Switch the sides for clarity and factor out v−:

vo =
RFv−
RS

+ v−

vo = v−(
RF

RS

+ 1)

And, finally, get the actual value of v− in there:

vo =
v1 + v2

2
(
RF

RS

+ 1)

We’re done! We can also easily see that if we set RF = RS, the output is simply vo = v1 + v2.

7.9 Op amp integrator

Due to some magic of capacitors, we can use op amps to create circuits that integrate and differentiate
signals (with respect to time). Here’s an integrator circuit:

−

+

C

+ −
vC

i

vo+
−vI

R
i

How does this circuit work? Well, remember the formula for the voltage over a capacitor:

vC =
1

C

∫ t

−∞
i(t)dt

v+ is grounded, and thus at 0 volts. v− is, via the virtual short technique, also 0 volts. Therefore, the

current through R is simply
vI
R

.

50



That same current must go through the capacitor, since there’s no other way (the noninverting input has
an infinite impedance), so the capacitor voltage drop is

vC =
1

C

∫ t

−∞

vI
R
dt =

1

RC

∫ t

−∞
vIdt

As with the previous op amp circuits where the noninverting input is grounded, we can find vo as

vo = v− − vC = 0− 1

RC

∫ t

−∞
vIdt

vo = − 1

RC

∫ t

−∞
vIdt

Thus this is an inverting integrator. If needed, we could feed the output into an inverting buffer (aka
inverting unity-gain amplifier) to get it positive.

If we do a more complete analysis, we get the differential equation

RC(1 + A)
dv−
dt

+ v− = vI

indicating that the time constant for this circuit is multiplied by the op amp gain A. Therefore, the

equation that describes vo for a step input is of the same form as we’ve seen in regular series RC circuits:

vo = −AV (1− e−
t

(1+A)RC )

... where V is the voltage of the step input.
Thus, for short time scales (short compared to (1 + A)RC), this circuit is a very good approximation of
an ideal integrator.

7.10 Op amp differentiator

−

+

R

+ −vR

i

vo+
−vI

C
i

This circuit is identical to the integrator except for one change: the capacitor and resistor places have
been swapped. So, how does this work, then?

v+ is grounded, and so via the virtual short method, v− must also be 0 volts. Therefore, the voltage drop
across the capacitor equals vI . The current through the capacitor is given by

i = C
dvI
dt

That same current i is then forced through the resistor R, which causes a voltage drop of R · i across the
resistor:

vR = RC
dvI
dt
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And, as with several of the previous circuits, vo equals v− minus the drop across the resistor:

vo = v− − vR = 0−RCdvI
dt

vo = −RCdvI
dt

So, as with the previous circuit, this one also inverts. And, again, we could pass it through an inverting
buffer op amp to get rid of the inversion.

7.11 Buffered filters

Consider a basic passive RC filter:

R

C

+

−

Vi

+

−

Vo

The dashed lines represent the filter components (the reason for them will be clear soon).
We’ve analyzed this circuit in a previous chapter. However, let’s look at how a more complete circuit
might look, when we attach a Thevenin equivalent source and a resistive load (perhaps a speaker):

R

C

RTH
+
−VTH RL

+

−

Vo

If we analyze this circuit, we’ll soon find that the transfer function is not at all the one we would expect
from just R and C. Rather, the transfer function would be

H(s) =
1
sC
||RL

( 1
sC
||RL) +RTH +R

Instead of what we actually wanted:

H(s) =
1
sC

1
sC

+R

What can we do about this? Well, one solution - that works just fine, but is rather wasteful - is to buffer
both the input and output of the filter:
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R

C

−

+

−

+

RL

RTH

+
−VTH

That’s a fair bit of extra complexity! However, the input op amp will make sure that virtually 0 current
is drawn from the source, and decouple the input from the filter.
Likewise, the output op amp will make sure virtually no current is drawn from the RC network, so that
the load resistance doesn’t affect the transfer function.
Assuming ideal op amps, this filter should behave as a passive filter does when there is no load (infinite
load resistance) and 0 source resistance. This filter also has (with ideal op amps) infinite input impedance
and 0 output impedance!

7.12 Op amp current source

We can use op amps to make very precise current sources. Here’s one of several ways to do so:

−

+
v+
v−

vSET
vSET

RL

RSET

Note that the topology above is identical to the noninverting amplifier! I only changed the resistor and
voltage source names, to make things more clear.
How does this circuit work? Well, we have negative feedback, as usual. Therefore, we can apply the virtual

short method, and see that the voltage across RSET is vSET . Therefore, the current through it is
vSET
RSET

.

Since the current into the noninverting input is negligible (even taken as 0 for our model), RL and RSET

are in series, and must share the same current! Therefore, the current through RL is the same as the

current through RSET , which the op amp tries to keep equal to
vSET
RSET

at all times.

Of course, there are some limitations. Most op amps have very low current limits, so this will only work for
small currents (a few mA, almost certainly less than 40 or so) or when using power op amps rated for high
currents. Second, the current can clearly never be larger than the supply voltage divided by RSET + RL,
since the supply voltage is the maximum the op amp can have on its output - in theory, in practice the
actual maximum output voltage will always be slightly lower than the supply voltage.
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7.13 Exponential amplifier

The inverting amplifier topology is extremely versatile, as we’ve already seen with the integrator and dif-
ferentiator configurations. We can do more, however! Lets see what happens with a diode in there:

−

+

D1

i

+
−vI

v−

R1

+ −vR1

i

vo

The analysis is very similar to that of the inverting amplifier and the integrator/differentiator.

v+ is grounded, so v− ≈ 0 by the virtual short method (since we have negative feedback). Therefore, the
voltage across the diode is simply vI . The current through a diode is given by the Shockley diode equation:

iD = IS(evD/VT − 1)

IS and VT are diode parameters. IS is the “reverse bias saturation current”, usually a very small value on
the order of 10−14 A, while VT is the thermal voltage, roughly 25 mV at room temperature.
Now, given that we know the diode voltage drop, we can calculate that the current through it is:

i = IS(evI/VT − 1)

That same current will, as with the previous configurations, be forced to flow through R1 and create a
voltage drop across it.
vo can be seen to be v− minus the drop across R1, and since v− is 0:

vo = −i ·R1 = −R1IS(evI/VT − 1)

The above equation makes it clear that there’s an exponential relationship between vI and vo. For a typical
silicon diode at room temperature, with R1 = 1000Ω, we can estimate(!) the relationship as

vo = −10−11 · evI/0.025

Note that the last “1” was dropped, as its value was 10−11 A, a current which is insignificantly small to
us.
Though the 10−11 term looks like it might dominate, it does not; the exponential increases extremely fast,
and the output voltage goes below −100V (remember that it’s an inverting amplifier) when the input is
still as low as 0.75 volts. Of course, the op amp will saturate if the power supply voltage doesn’t reach
that low.
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7.14 Logarithmic amplifier

By swapping the position of the diode and resistor in the exponential amplifier, we get this schematic:

−

+

R1
i

+
−vI

v−
+ −

vD

i

vo

This is still easy to analyze, but there’s a bit more math. We still use the diode equation, but this time,
we need to solve the equation for vD before we can use it to calculate a voltage drop given a current (the
form we have only calculates current from a known voltage).

Again, the Shockley diode equation is

iD = IS(evD/VT − 1)

The current iD through the diode will be given by the current through R1, which is
vI − v−
R1

. As v− is 0

via the virtual short (this should be second nature at this point!), the current is simply given by
vI
R

, so

let’s make that substitution. Then, we will need to solve the equation for vD. Let’s start by distributing
the IS, and getting the exponential on its own:

vI
R

= IS(evD/VT − 1)

vI
R

= IS · evD/VT − IS
vI
R

+ IS = IS · evD/VT

Divide both sides by IS:

vI
RIS

+ 1 = evD/VT

Take the natural log of both sides:

ln (
vI
RIS

+ 1) =
vD
VT

And, finally, multiply both sides by VT , and just switch the sides:

vD = VT · ln (
vI
RIS

+ 1)

Now we know how to calculate the diode’s voltage drop, which makes us very close to finding vo. We know
that vo = v− − vD, and that v− is 0, so

vo = −vD

vo = −VT · ln (
vI
RIS

+ 1)

And we are done! This is indeed a logarithmic amplifier.
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7.15 Active RC filters

We can also construct filters that use op amps as part of the actual circuitry, rather than just having them
as input/output buffer. Such filters are called active filters, and they come in various topologies, where
the op amp’s function differs.
Here’s an example for an active RC filter that we’ll analyze in this section:

−

+
Vo

R2

C1

C2

R1

+
−Vi

v1 v−

Let’s get started. We know that Vo = A(v+ − v−) = −Av−.
Let’s write node equations for v1 and v− using the impedance method:

v1 − Vi
R1

+
v1 − Vo
ZC2

+
v1
ZC1

= 0

(since v− ≈ 0 via the virtual short technique.) and

−v1
ZC1

+
−Vo
R2

= 0

(Again, since v− ≈ 0 that term disappears, to simplify our calculations.)

After substituting ZC1 =
1

sC1

and ZC2 =
1

sC2

, we solve the equations for Vo (I used Mathematica), simplify

and get

Vo = − sC1R2Vi

s2 + C1+C2

C1C2R2
s+ 1

C1C2R1R2

Comparing the denominator to the canonical form s2 + 2αs+ ω0
2 we get

2α = ∆ω =
C1 + C2

C1C2R2

ω0 =
1√

C1C2R1R2

Q =
ω0

2α
=

√
C1C2R1R2

R1C1 +R1C2

If we substitute s = jω and divide by Vi, we get the circuit’s transfer function H(jω), also simply
Vo
Vi

:

H(jω) = − jωC1R2

−ω2 + jω(C1+C2)
C1C2R2

+ 1
C1C2R1R2
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7.16 Positive feedback

Positive feedback was briefly touched upon in the section on negative feedback, but deserves more study.
Let’s see what happens if we make a connection similar to the inverting amplifier, but connect the feedback
and input to the positive terminal, and ground the negative terminal.

−

+
R2

i

+
−vI

v+

R1

+ −vR1

i

vo

Let’s analyze this circuit intuitively first. Note that we’re feeding a portion of the output back to the
positive terminal of the op amp, which means we now have positive feedback.
Assume that the circuit is in equilibrium, to begin with. What would happen in this circuit if, for whatever
reason (noise, external excitation, etc.) the output node vo would increase in voltage?
Well, we have a voltage divider back to the positive terminal, so a portion of that voltage increase would
appear at the positive terminal. Via the op amp equation vo = A(v+ − v−), the op amp would hugely
amplify that voltage, and vastly increase the output. That, in turn, would make an even higher voltage
appear at the + terminal, which would get amplified, etc. Very quickly, the op amp will spiral out of
control, saturate and hit the positive supply rail.

Let’s then think about what would happen if we start out at v+ = v− = vo = 0 volts. Say vo drops down
to −1 volt. A portion of that would be fed back to the positive input; for this example, let’s say R1 = R2,
so that exactly half gets fed back.
−0.5 volts would appear at v+, while v− would remain at 0 volts as always (it’s grounded!). Via the good
old op amp equation, we have vo = A(−0.5− 0), so the op amp will try to force the output down as low as
it can (as the value of A is very, very large, the op amp wants vo to be much less than the supply voltage
that might be on the order of −12 volts).

7.17 Op amp comparator

Let’s try to build a circuit that exploits the positive feedback phenomenon, where the output voltage is
virtually always either +VS or −VS. We can use such a circuit as a comparator:

−

+

+
−vI

vo

This circuit will have vo = VS whenever vI is positive (vI > v−, and v− is grounded) and vo = −VS when
vI is negative (vI < v−), as long as Av+ > VS or Av+ < −VS is true, so that the op amp is saturated.
Of course, the v− terminal doesn’t have to be grounded - it could be set to some reference voltage that we
want to compare to v+, via a voltage divider, perhaps. It could even be a second signal.
Here’s the transfer function for a comparator, normalized so that vo ranges between 1 and -1:
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5
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(The filled areas are the output; the unconnected lines were hard to spot without the filling.)
Looks great! However, what whould happen if there were noise on the input voltage? The distorted input
could cross zero multiple times due to noise, so the output is not a clean square wave:

Time

-15

-10

-5

5

10

15

Volts

Because the noise causes the input to cross zero multiple times extra per cycle, there are glitches in the
square wave output. This example is obviously exaggerated, but we still want a better solution. If we
could move the threshold from 0 to some positive/negative voltage pair, so that the noise doesn’t cross
those thresholds very easily, this could be avoided.
Let’s see (in the next section) what would happen to this transfer function if we add positive feedback.
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7.18 Schmitt trigger

If we change the circuit slightly from the previous comparator to add positive feedback, and at the same
time provide the input to the inverting input, we get this circuit:

−

+

v−
v+

v+ =
vo
2

vI

vo

R1

R2

This circuit is a Schmitt trigger ; more specifically, an inverting Schmitt trigger. It has hysteresis (it “re-
members” the previous state of the circuit), and will solve the problem we had. How? Well let’s analyze
the circuit and find out!

Let’s do a manual “simulation” again, like we did with the previous comparator. Also, let’s use some
numerical values to make it a bit more intuitive. We’ll use R1 = R2 (their values don’t really matter, only
the ratio) and VS = 15 V (and therefore −VS = −15 V). Also, we’ll start off our simulation with vI = 0
V and vo = 15 V, a state that we’ll soon see is valid for the normal operation of this circuit.

With the values we’ve chosen, v+ will be half of vo, so v+ = 7.5 volts. The op amp equation always applies,
so with v− = vI = 0 volts, the op amp will saturate the output, as vo = A(7.5 − vI) = A(7.5 − 0) far
exceeds VS = 15 volts. Let’s look at that equation a bit more carefully. As long as A is very big (again,
it’s usually over 104, and not rarely over 106), vo will stick to VS as long as the input is less than 7.5 volts.
For example, say the input increases all the way to 7.4 volts; via vo = A(7.5− 7.4), the output will still be
vo = 0.1 · A which still far exceeds VS.
Interesting things happen when v− > v+, however. For example, when vI = v− = 7.6 volts, v+ − v−
becomes negative, and the op amp equation evaluates to a hugely negative number, and so the op amp
will saturate at the negative rail −VS, since vo = A(7.5− 7.6) = −0.1 · A� −VS.

Now that the input has gone above the old “switching threshold” of 7.5 volts, let’s see what happens when
we go back below again. Note that now that vo = −15 volts, v+ = −7.5 volts, thanks to the voltage
divider at the output.
We have vo = A(v+ − v−) = A(−7.5− 7.6) at the moment, which evaluates to a very negative number, so
the op amp should indeed be in negative saturation. What happens if we lower the input voltage to 7.4
volts, below the old switching threshold? It still evaluates to a negative number! Even if we go to vI = 0,
it will still evaluate to vo = A(−7.5). In order to get the output to switch, we need to go all the way down
to vI ≈ −7.5 volts (ever-so-slightly lower). Let’s use vI = −7.6 volts. Via the good old op amp equation,
we have vo = A(−7.5− (−7.6)) = A(0.1), which means the output will now switch to positive saturation
again, and v+ will therefore become +7.5 volts.

Note that now that we’ve switched again, the only way to switch the output back to the negative voltage
is to go above vI = 7.5 volts, at which point vO = A(7.5− vI) will turn negative.

So, as can be seen in the rather messy analysis above, a signal like our sine wave will cause a clean square
wave output, as the noise we had comes nowhere near VS/2 or −VS/2, and so the output won’t switch more
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than once per intentional zero crossing. This trigger’s inverting nature is also clear, as it only switches to
a negative output when the input gets positive enough.

Let’s go back to the noisy sine wave, and see how the same input looks through a Schmitt trigger, instead
of a comparator:

Time

-15

-7.5

7.5

15

Volts

(Again, the filled areas are the output.)
As in the textual example above, we start out with the input at 0 volts (plus a whole ton of noise, which
makes it start out closer to 5 than 0), and start the world with vo = 15 V, and take it from there.
Despite the extreme, exaggerated noise, the output is a perfectly clean square wave! Note how the output
switches whenever the input crosses the ±7.5 V threshold set by the voltage divider, but only from “one
direction” - for example, when the sine wave is starting to go up from its bottom position around the
graph’s middle, it crosses the -7.5 volt threshold without anything happening. In just this graph, the sine
wave crosses the thresholds 6 times (6 intended times - not counting the extra ones due to the noise), but
only switches 3 times. This is due to hysteresis - the past matters; which “direction” it comes from decides
whether the output will switch or not.
Also, of course, note how the output is an inversion of the input. It is however perfectly possible to build
non-inverting Schmitt triggers.

We can also vary the switching thresholds. The equation is

Vthres = ±vI ·
R2

R1 +R2

... where R2 is the resistor between v+ and ground.
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7.19 Relaxation oscillator

We can use the inverting Schmitt trigger to make an op amp oscillator, by allowing a capacitor to control
the v− voltage. The capacitor is then charged/discharged through a resistor connected to vo, like this:

−

+

v−
v+

R

v+ =
vo
2

C

vo

R1

R1

Notice that the bottom resistors are the same value, so that the thresholds are again set at ±VS.
The “top” resistor R is the only one that matters for the rise/fall times, while the “bottom” ones are the
only ones that matter for setting the switching thresholds.

Let’s take the usual intuitive look at how this would work. Imagine it starts out with the capacitor voltage
(which is the same as v−) at 0 volts, and vo at the positive rail, 15 volts (so -VS is then -15 volts).
In this state, a current will flow from vo to v−, due to the voltage difference (15 - 0 volts). This current
flows through R1, and has nowhere to go but through the capacitor, so the capacitor is charged by this
current. It keeps charging along happily with no other change in the circuit, up until it passes just slightly
above 7.5 volts (VS/2). At that point, according to the op amp equation, vo = A(7.5 − v−) will turn
negative, and force vo down to the negative rail.
When that happens, the capacitor voltage will be almost exactly 7.5 volts, while vo will be at −15.
Therefore the capacitor will discharge through R1, until it’s down to VS/2 = −7.5 volts, at which point
vo = A(−7.5 − v−) will turn positive, and force vo to the positive rail. This cycle will repeat over and
over, and produce - at least in theory - a perfect square wave, with a 50% duty cycle (i.e. the “on time”
is exactly equal to the “off time”).

Now, let’s turn to calculating the oscillation frequency of this circuit. The way we do this is to calculate
the rise time and the fall time for the RC circuit at the inverting input, and use that information to find
the frequency.

7.19.1 Rise time

To calculate the rise time, let us define t = 0 such that the capacitor voltage is as low as it ever gets, i.e.
−VS/2. We can then use our old trusty formula vC = VS + (V0 − VS)e−t/RC , and set that equal to the
target voltage, VS/2:

VS
2

= VS + (−VS
2
− VS)e−tr/RC

VS
2

= VS −
3VS
2
e−tr/RC

To start with, we subtract VS from both sides, and then multiply by −1:

−VS
2

= −3VS
2
e−tr/RC
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VS
2

=
3VS
2
e−tr/RC

We can now divide both sides by
3VS
2

, which is the same as multiplying by
2

3VS
:

VS
2
· 2

3VS
=

2

3VS
· 3VS

2
e−tr/RC

��VS

�2
· �2

3��VS
= e−tr/RC

This remains:

1

3
= e−tr/RC

We take the natural log of both sides, and multiply both sides by -RC:

ln

(
1

3

)
= − tr

RC

−RC ln

(
1

3

)
= tr

Via log rules, ln (1/3) = ln (1)− ln (3) = 0− ln (3):

tr = RC ln (3)

Ah, finally: we know the rise time. Next up: fall time.

7.19.2 Fall time

For the fall time, we use the same equation vC = VS + (V0 − VS)e−t/RC , but plug in other values for
the variables, and then set it equal to the target value of −VS/2. Remember that the “supply” that is
“charging” the capacitor is now −VS, and the initial voltage now VS/2:

−VS
2

= −VS + (
VS
2
− (−VS))e−tf/RC

−VS
2

= −VS +
3VS
2
e−tf/RC

Compare this form to the rise time:

VS
2

= VS −
3VS
2
e−tr/RC

If we multiply both sides of the fall time equation by −1, we can easily see that these equations are exactly
the same, which means the answer must also be the same!

tf = tr = RC ln (3)

7.19.3 Frequency

Frequency is the inverse of cycle time, and tr + tf make up one full cycle. Therefore,

f =
1

tr + tf
=

1

2RC ln (3)

If the negative supply is not equal to exactly −VS, the formula above (and its derivation) becomes quite a
bit more complex. We will not worry about that case, as having equal supplies to within a small margin
of error is common.
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Chapter 8

Energy and power in digital circuits

8.1 Power usage for an NMOS inverter

Let’s look at the power usage of our good old resistor/MOSFET inverter. However, we’ll add a capacitance
between vO and ground, to model the capacitance being driven (the input of other gates, perhaps, and the
parasitic capacitances in the wires).

RL

vO

CvI

+
−VS

Using the SR model for the MOSFET, and considering the case for a static vI , which means the capacitor
will act as a long-term open circuit, this circuit is equivalent to the previous one:

RL

vO

vI

RON

+
−VS

We will use this circuit to calculate this inverter’s static power, i.e. the power used when the output is not
switching, but either constantly low or constantly high.
How do we calculate the power used by this circuit? Doing so is of course extremely simple. There are
two cases, switch open and switch closed.

Switch open: no current flows, and so the power usage is zero.
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Switch closed: A current
VS

RL +RON

flows (we assume the switch is ideal and has 0 resistance). The power

usage is that current squared times the resistance, or (much simpler) via P =
V 2

R
, just

P =
VS

2

RL +RON

Since there are two cases with vastly different power draws, we can use the average of the two: if we
assume a 50% probability for the gate to be on, and 50% for it to be off, the average power is roughly

Pstatic =

VS
2

RL+RON
+ 0

2

Pstatic =
VS

2

2(RL +RON)

So, we now know the static power of this circuit.
The reason we average the two cases is not that any single inverter is going to be at each state an equal
amount of time, but rather that on a chip with millions or even billions of such gates, we consider the
probability of any given one to be either on or off to be 50%.

As you might expect, there’s a counterpart to static power called dynamic power, which is the power used
when switching the inverter at a certain frequency.
Unfortunately, the derivation of that expression is rather messy, though not strictly hard. Only techniques
previously discussed are required, so it will be left as an exercise to the reader, if you are interested. If
not, read on.

This circuit is equivalent to the inverter circuit, if we use the SR model for the MOSFET once again:

+
−VS

RL

C

vO

RON

If we drive the input with a square wave with a 50% duty cycle - that is, the on time is exactly equal to
the off time, it turns out (this is the skipped derivation, of course) that the dynamic power is

Pdynamic = CVS
2f

RL
2

(RL +RON)2

Let’s add the static power to that:

P = Pstatic + Pdynamic

P =
VS

2

2(RL +RON)
+ CVS

2f
RL

2

(RL +RON)2

That’s a slightly complex expression, but we can simplify it quite nicely. RL is usually much greater than
RON , to the point where we can simply neglect RON . Doing so, the equation reduces to
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P =
VS

2

2RL

+ CVS
2f
RL

2

RL
2

Ah! Now we can get rid of the entire fraction to the very right:

P =
VS

2

2RL

+ CVS
2f

Not bad! Note how the dynamic power depends on three things: the capacitance C (a linear dependence),
the switching frequency f (also a linear dependence) and the supply voltage VS - a quadratic dependence!
Halving the supply voltage cuts the dynamic power usage in four!

Now, let’s run some example numbers for a hypothetical chip we might want to build. Say we have a chip
with 5 million of these inverter gates, with RL = 10kΩ, C = 1 fF (10−15 F) and VS = 5 volts, and we will
run it at 3 GHz. Let’s put these numbers into the power equation:

P =
VS

2

2RL

+ CVS
2f

P = 5 · 106

[
52

2 · 10000
+ 10−15 · 52 · 3 · 109

]
= 5 · 106 [1.25 mW + 75 µW]

= 6250 + 375 = 6625 W

... so this chip apparently consumes, on average, 6.625 kilowatts of power!!! That’s enough to power
50-100 modern quad-core CPUs, and our relatively simple chip only has 5 million gates, which means we
are probably a bit over a decade behind Intel’s and AMD’s current offerings! This is clearly untenable.
The next section will discuss a means to eliminate all of the static power, and also list various ways to
bring the dynamic power down to more reasonable levels. 375 watts is possible to cool, but not in a way
that is both quiet and cheap.
As of mid-2012, Intel’s top-end mainstream CPUs (not their most extreme ones, but the kind most
enthusiasts would buy) have a Thermal Design Power (TDP) of 77 watts, down from 95 watts in the
previous generations. Actual consumption values can be (much) lower due to power saving when not at
full load, however.

8.2 The P-channel MOSFET

Note to 6.002x students (as I expect virtually all readers to be): this section is NOT
covered on the final exam.

Remember that the static power for the inverter was divided into two cases: low input (MOSFET switch
open) where static power was zero - excellent! - and high input (MOSFET switch closed), where the static
power was very high - at least if we consider millions of gates. The reason that there was power dissipation
when the MOSFET is closed is that there is a path for the current to flow from VS to ground. If we could
remove this path, for example by placing a switch in place of RL, that was closed whenever the pulldown
MOSFET was open, and vice versa, could solve our problem.

Fortunately, such a switch exist, and it’s a different kind of MOSFET. The MOSFETs we’ve used so far
are N-channel MOSFETs, named as such because the channel that forms between the source and drain
terminals is made up of electrons - negative charge carriers.
The complementary MOSFET is known as the P-channel MOSFET. Here, as expected, the channel that
forms is made up of positive charge carriers - “holes”, which are the absense of electrons.
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Before we discuss how the P-channel MOSFET works, let’s review the N-channel.
As we remember, the N-channel MOSFET (in the SR model) is off/open when vGS < VT , and on/closed
when vGS ≥ VT , where vGS is the voltage from gate to source, which is always positive. (If it’s negative,
we switch the drain/source terminals with each other, so that vGS becomes positive.)

For the P-channel MOSFET to be complementary, or in fact for it to be useful here, it needs to have
the opposite behavior, and it does. We still measure vGS, but note in the schematic symbol above that
the source is now “on top”, and will connect to the power rail. Therefore, the source voltage is usually
higher than the gate voltage (when both are taken with respect to ground), as opposed to the pulldown
N-channel we’ve used in previous inverters, where we always connect the source to ground.
The P-channel MOSFET is on/closed when vGS ≤ VT and off/open when vGS >VT .

For example, let’s say VS is 5 volts, and we connect the source to VS and the drain directly to ground (just
for this experiment). If the gate is also connected to ground, vGS will be 0 − 5 = −5 volts. If VT is, say,
−1 volts, vGS ≤ VT , so the MOSFET is on, and current flows through it. Clearly, for this configuration
and these values, the MOSFET will be on as long as the gate voltage (with respect to ground) is less than
or equal to 4 volts. If we make it 5 volts, however, vGS will no longer be less than or equal to VT , since we
will have vGS = 5− 5 = 0.

66



8.3 CMOS logic

Note to 6.002x students (as I expect virtually all readers to be): this section is NOT
covered on the final exam.

We can now begin using the P-channel MOSFET in our gates. Gates designed using a combination of
P-channel and N-channel MOSFETs are known as CMOS gates, for Complementary MOS.
The introduction of CMOS was a revolution for computing and electronics in general, as it virtually elim-
inates static power entirely. In modern microprocessors, leakage current is one of the bigger problems,
which only increases as transistors become smaller and smaller with increasingly advanced technology
nodes. However, leakage current will not be discussed here.

Now, let’s get on with it. Our new, nice CMOS inverter looks just about you’d expect: we replace RL

with a P-channel MOSFET:

vO

C

vI

+
−VS

(Note that the capacitor meant to model the load capacitances etc. remains, as we will soon analyze the
power usage for this circuit with those capacitances included.)

Since the one input goes to the gates of both MOSFETs, as long as we don’t have vI in the circuit’s
forbidden region (that is, we avoid VIL < vI < VIH), the MOSFETs should never be on at the same time.
Of course, if they were to be on at the same time, a very large current would flow through them (as long
as RON is small for both MOSFETs), which is highly undesirable.

Now, let’s analyze the power usage of this inverter! Due to the nature of the CMOS logic, there will never
be a direct path from VS to ground through a resistance (RON), only through the capacitor, which acts
like an long-term open circuit. Therefore the resistance between VS and ground is always infinite for the
static power case (constant/non-switching input), and so the static power is zero! As mentioned earlier,
due to leakage currents and other such effect (quantum effects and so on), this is not quite true. However,
compared to the previous NMOS inverter with a > 6 kW power draw per 5 million gates, it might as well
be zero.
So, if the static power is zero, let’s calculate the dynamic power.

If we use the SR model for both MOSFETs, this circuit is fully equivalent:

+
−VS

SPMOS RONP

C

SNMOS RONNvO
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Compare the two until you’re convinced that they are equal!
Now, remember that the switches are never closed, and never open, at the same time. If the PMOS switch
is closed, that means the NMOS switch is open, and vice versa.
Now, we will consider the case when this circuit is driven by a square wave, yet again with a 50% duty
cycle. Let’s call the time when the PMOS switch is closed T1, and the time when the NMOS switch is

closed T2. T = T1 + T2 is then the cycle time, and f =
1

T
is the switching frequency. Our goal is to find

the average dynamic power. We’ll start by considering the case where the PMOS switch is closed and
the NMOS switch open, i.e. when the input is low and output is high (SPMOS connects vO to VS, while
SNMOS is an open circuit), i.e. we’ll calculate the energy supplied by the voltage source during T1.

8.3.1 Energy supplied during T1

Okay. So when the PMOS switch is closed, we can replace it with a short circuit, while the NMOS switch
can be replaced with an open, which makes the entire NMOS fall out of the circuit:

+
−VS

RONP

C

vO

Well, this looks simple enough. We know that for a series RC circuit with a step input, the waveform is
either a rising exponential or a decaying exponential. If we assume that the initial capacitor voltage is
zero, which we will (we’ll assume that the switch is closed long enough for it to charge fully, and in the
next step of analysis, the NMOS switch is closed long enough for it to discharge fully), we get the two
common forms for the capacitor voltage and current, respectively:

vC(t) = VS(1− e
− T1

RONP
C )

iC(t) =
VS

RONP

e
− T1

RONP
C

We want to calculate the total energy supplied by the source, however, not the energy stored in the
capacitor. We know that P = V I, but the V in question will be the supply voltage, not the capacitor
voltage. We can however use the capacitor current, since this is a series circuit, and that current must be
equal to the supply current.
Since the current is changing, we can’t simply multiply the two. Instead, we need to integrate over the
interval [0, T1]:

E =

∫ T1

0

VS · iC(t)dt

E =

∫ T1

0

VS
VS

RONP

e
− T1

RONP
C
dt

We can move the fraction outside, as it’s made up of constants only:

E =
VS

2

RONP

∫ T1

0

e
− T1

RONP
C
dt
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To speed things up, we’ll use the remembered result that∫
eaxdx =

eax

a
+ C

so:

E =
VS

2

RONP

[
−RONP

Ce
− T1

RONP
C

]T1
0

E = VS
2

[
−Ce

− T1
RONP

C

]T1
0

If we evaluate this expression at 0, the exponential goes to 1, so we end up with

E = VS
2

[
−Ce

− T1
RONP

C + C

]
E = VS

2

[
C

(
1− e

− T1
RONP

C

)]
E = VS

2C − VS2Ce
− T1

RONP
C

Phew. We can simplify the above, however. Remember that we said that we would let the capacitors
change and discharge fully1. Therefore we can assume that T1 � RONP

C (since several time constants
must pass during T1 for it to discharge) which means the second term goes to 0, and all that remains is

ET1 ≈ VS
2C

Aha! We now know the energy supplied by the source during T1 (when the PMOS switch is the one that’s
closed). Now for some bad news.
Recall that we let the capacitor charge fully. Also recall that the formula to calculate energy stored on a

capacitor is
1

2
CV 2. Here, we charge it all the way to VS, so the energy stored on the capacitor is

1

2
CVS

2.

However, if we compare this to ET1 above, this is only (exactly) half of the energy supplied! We could
integrate the power dissipated by the resistor, or we could get the same result by using conservation of
energy: the rest of the energy, i.e. half of it, must have dissipated through the resistor (i.e. the MOSFETs
RONP

)!
It appears that no matter what we do, half the energy will be lost as heat, while the other half remains
usable in the capacitor. Bummer. Well, at least now we know why dynamic power even exists.
Next, let’s find the energy dissipated during T2.

8.3.2 Energy dissipated during T2 and total energy used

Thankfully, this subsection will be much shorter than the previous one. With the PMOS switch now open,
and the NMOS switch closed, the equivalent circuit is simply this:

C RONN

vO

1Mathematically, this would take infinite time. In practice, 5 time constants or so is usually close enough to consider the
process pretty much done.
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Again, remember that we said we would give the capacitor time to discharge fully. Therefore, all of the

energy stored on it (
1

2
CVS

2) must be dissipated through the resistor, and that’s that.

Also, note that the source is not connected to this circuit, so it clearly doesn’t draw any additional power.
Therefore, the total energy supplied by the source is given by ET1 + 0, so E = ET1.

Now that we know the total energy, we can calculate the average power. Power is just energy over time,
so to find the average, we can simply divide the two:

P =
E

T
where T = T1 + T2. Since frequency is the reciprocal of T, the period, we can equivalently write

P = Ef = CVS
2f

Ah! So we’ve finally found the dynamic power usage by this CMOS inverter, and therefore also the total
power usage (since the static power usage is zero)!
Note that this equation for the CMOS inverter’s power usage is the same as the equation for the old
NMOS/resistor inverter’s dynamic power usage. Therefore, we already know the power usage for our
example scenario, but let’s duplicate the results here. Again, we use VS = 5 volts, C = 1 fF and f = 3 ·109

Hz (3 GHz), and multiply that times 5 million gates:

P = CVS
2f

P = 5 · 106
[
10−15 · 52 · 3 · 109

]
= 5 · 106 [75 µW]

= 375 W

Way, way better than the old inverter’s 6.6 kilowatts, but still not acceptable. What can we do next?
Well, there are several ways to reduce dynamic power, three of which are obvious from the above equation:
we can reduce the load capacitance, reduce the supply voltage, and reduce the frequency.
Reducing the frequency might not be desirable, though, since that will reduce chip performance.

Let’s have a look at reducing the power usage of this chip.

8.3.3 Reducing CMOS power usage

Reducing VS looks like a good idea to begin with. In fact, the 5 volts we’ve used places our technology a
bit in the past; the last “PC microprocessor” (that is, for regular home use) to use a 5 volt core voltage
was the Pentium, around 1996. Modern CMOS chips use supplies as low as 1 volt or even lower. If we
were to run our chip above on VS = 1 volt, the power would come down all the way to 15 watts!
Of course, we can’t simply reduce the supply voltage until we’re at virtually zero. Remember that lower
voltages lead to smaller currents, which lead to longer capacitor changing times, and thus, in the end,
slower chip operation. In addition, things such as a MOSFETs VT can’t go arbitrarily low. Still, 1 volt is
enough for modern chips to run as fast as they do.

One of the main ways microprocessors go forward is by reducing the size of the chips. This is referred to
as “shrinking”. For example, perhaps the main difference between 2011’s Sandy Bridge (the codename for
Intel’s Core i3/i5/i7 2xxx CPUs) and 2012’s Ivy Bridge (Intel Core i3/i5/i7 3xxx) is a die shrink, from 32
nm to 22 nm. That size (22 nm) refers to the approximate size of the smallest transistors in the chip. The
full definition is slighty complex.
When doing such die shrinks, the gate capacitances tend to decrease, which leads to a reduction in dynamic
power. In general, die shrinks also allow for a decrease in the supply voltage.
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What about the frequency? Well, as said before, we don’t want to simply lower that too much, or perfor-
mance will suffer. What we can do, and what is actually done in modern chips, is to vary it over time. For
example, while the computer is idle, or doing something that is not very computationally intensive (web
browsing, text editing), the processor can reduce its frequency, and only stay at the full frequency when
really needed. Lower frequency also means the supply voltage can be reduced during those idle times,
which further reduces power usage!

Yet another way to reduce power usage is clock gating. This technique can power down parts of a chip
that aren’t currently used. For example, the floating point-unit of a microprocessor might be currently
unused, so we can disable the clock signal to it.
Doing so is simple: we can (for some designs) use an AND gate, and connect the clock to one input of
the AND gate, connect an enable line to the other, and the gate’s output to the floating point-unit’s clock
input.
When the enable line is low (0), the AND gate will produce a 0 on its output no matter whether the clock
signal is high or low.
What the enable line is high (1), the AND gate will reproduce the clock signal on its other input (as
A · 1 = A, the clock signal is passed through unchanged in this case).

8.4 CMOS logic gate design

Note to 6.002x students (as I expect virtually all readers to be): this section is NOT
covered on the final exam.

This section doesn’t really belong in this chapter, but it’ll have to stay here for the moment. If I add a
proper chapter on the digital abstraction, I’ll move it there at that point.
Using what we already know about digital gates and CMOS logic, we just need a small guideline to make
designing CMOS gates easy.
In our old NMOS gates, we had a simple resistor as a pullup, and N-channel MOSFETs as pulldowns. All
we had to do was to configure the pulldown network, and we’d be done.
For CMOS gates, we also need to configure the pullup network. However, doing so is rather simple.

If we want to implement the logical function F , perhaps NAND, so that F = A ·B, we design it so that:

The pullup network is a short when F is true, but an open otherwise

The pulldown network is a short when F is true, but an open otherwise
We also only use P-channel MOSFETs for the pullup network, and only use N-channel MOSFETs for the
pulldown network. That’s all we need to do. We then insert those two networks into the “CMOS gate
template”, which looks like this:

+
−VS Z

Pullup

network

Pulldown

network
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... where Z is the logic function’s output. The inputs are connected to the MOSFETs in the pullup and
pulldown networks, of course.
Remember that this topology is inverting by its very nature, so to make non-inverting functions such as
AND/OR, we would make a NAND/NOR gate and then send that output to a NOT gate.

Let’s use what we now know to design a NOR gate. For NOR, the function is F = A+B, and the

complement is F = A+B = A+B.

We begin with the pulldown network, since we have designed NOR gates in the past. The pulldown re-
mains the same as before, but let’s go through the method anyway.
We need transistors such that it is a short circuit when F = A + B is true. That’s just a regular OR
function, which is true whenever either or both inputs is true, so we use two parallel N-channels here, so
that it’s a short when either input is true, but an open circuit when both are false.

What about the pullup? Here, we need a short circuit when F = A+B is true. This is (as the gate will
be) NOR, which is true when both A and B are zero, and never otherwise. Therefore, this pullup network
needs to be such that it’s only a short circuit when A = B = 0, which we can do with two P-channel
MOSFETs in series. (Remember that we only use P-channels for the pullup.)

That concludes our gate design - all that remains is to display the result:

+
−VS

Z

A B

A

B

And we are done! The same method can be used to design NAND and NOT gates, which we can then com-
bine to form any boolean logic function. (In fact, having nothing but NOR gates still makes that possible!)

We can also make gates with more than two inputs this way. To turn the above into a 3-input NOR gate,
we would simply add a “C” P-channel MOSFET in series with the other two pullups, and a “C” N-channel
in parallel with the others in the pulldown network.
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Chapter 9

Miscellaneous

9.1 Impulses and steps

9.1.1 A note

For a linear circuit - one with resistors, capacitors and inductors ONLY - no sources allowed - an interesting
relation between input and output exists. If y(t) is the output for the input x(t), the output for the
derivative of x(t) will be the derivative of y(t). The same goes for integration. That is,

x(t)→ y(t)

x′(t)→ y′(t)∫
x(t)dt→

∫
y(t)dt

The usefulness for this will soon be clear. In a short preview, we can calculate the behaviour of such a
circuit to for example an impulse, and then integrate the response we got; the integrated answer will then
be the circuit response to a step, as a step is the result of integrating an impulse.

9.1.2 Impulses

Impulses are (theoretical) bursts of an infinite voltage/current over an infinitesimally small time. The
Dirac Delta function, δ(t), is used to describe them. The delta function is defined as1

δ(x) =

{
+∞ x = 0

0 x 6= 0

In other words, it is zero everywhere except at x = 0, where it’s infinite. There is an additional identity
it is constrained to, however: ∫ ∞

−∞
δ(x)dx = 1

In other words, the area under the curve is exactly 1. Mathematically, the delta function is not a proper
function, but can be defined as a distribution.
In a parallel, current source-driven RC circuit, a current impulse at t = 0 delivers 100% of its charge to
the capacitor, and essentially creates an initial condition for t = 0+. Assuming the capacitor has no state,
the capacitor voltage after the impulse will be

vC(0+) =
Q

C

1Perhaps not rigorously, but good enough for our purposes.
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where Q is the area of the impulse, i.e. the current source output is given by

Qδ(t)

, so Q is in coulombs, the SI unit for electric charge. The unit is such that

1 coulomb

1 farad
= 1 volt

In such a circuit, the capacitor voltage (and thus the entire circuit’s voltage, as there is only 1 node besides
ground) for t > 0+ will be given by

vC(t) =
Q

C
e−

t
RC

The dual of this circuit is the series RL circuit, with a voltage source, a resistance and an inductance. In
this case, we have a voltage impulse, that delivers a flux linkage Λ to the inductor. As above, this will
essentially create an initial condition, this time for the inductor current. Assuming the inductor has no
state, the current through it will be:

iL(0+) =
Λ

L

where Λ is the area of the impulse, i.e. the voltage source output is given by

Λδ(t)

, so Λ is in webers, the SI unit for magnetic flux. The unit is such that

1 weber

1 henry
= 1 ampere

Again, an in the previous case (the circuits are duals, after all), the inductor current for t > 0+ is given by

iL(t) =
Λ

L
e−

Rt
L

9.1.3 Steps

Steps are the result of integrating an impulse. Steps are likely more intuitive than impulses. The unit step
function (or the Heaviside step function) has the definition

u(t) =

{
0 t < 0

1 t ≥ 0

In words, it “turns on” at t = 0, and so is a useful model for things such as a voltage source turning on at
t = 0. Such a source could be written as

VIu(t)

where VI is the voltage of the source when turned on.

As noted in the introduction section, a step is the result of integrating an impulse. Thus, we can calculate
the circuit response to a step by calculating the response to an impulse, and then integrate the answer.
In a similar manner, we can calculate the response to a step, and differentiate the answer to find the
response to an impulse.
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9.1.4 Shifts

The above functions can be shifted to start at times other than t = 0 by shifting them.
For example, while the unit step function u(t) “turns on” at t = 0, we can make it turn on at time t = 5
by shifting it, like so: u(t− 5)
The above function will have t − 5 be negative until t = 5 where it becomes positive, and the unit step
function changes its output from 0 to 1.
The exact same principle applies to the unit impulse function δ(t).
In general, for the change to happen at time t = T , use u(t− T ) or δ(t− T ).
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